
DISPATCHED ROUTING NETWORKS

STANFORD AI LAB, NLP GROUP TECH REPORT 2019-1

Clemens Rosenbaum,∗1 Ignacio Cases,∗2
Matthew Riemer,3 Atticus Geiger,2

Lauri Karttunen,2 Joshua D. Greene,4, Dan Jurafsky,2, Christopher Potts,2
1University of Massachusetts Amherst

2Stanford University
3IBM Research 4Harvard University

cgbr@cs.umass.edu, cases@stanford.edu
∗ equal contribution

June 5, 2019

ABSTRACT

Routing and Recursive Routing Networks (RRNs) are highly expressive neural networks
with modular self-assembling architectures that have proven successful in complex NLU
tasks. However, this expressive power can at times be both a blessing and a curse. For many
practical problems, vanilla RRNs tend to overfit to the limited data available. However,
recent work has shown that high-quality meta-information can be extremely useful as a guide
for routing in settings that require sample efficiency. Unfortunately, this meta-information is
highly problem-dependent, and oftentimes it is not available at test-time. To compensate,
we introduce an additional network that is trained jointly with the routing network to map
samples to meta-information: a dispatcher. The dispatcher’s goal is finding groups of samples
that are as useful to the router as the groups defined by meta-information. We find that RRNs
augmented with an end-to-end dispatcher achieve strong performance in multi-task learning
scenarios while exhibiting high levels of generalization when adapting to new, unseen tasks.

1 Introduction

Core to human cognition are the lifelong abilities to learn new expressions from a small number of examples,
adapt to new types of input, and generalize creatively. These rich and efficient learning skills exploit the
capability to modularize, i.e., to decompose problems and solve them by re-composing elements from prior
solutions [Lake et al., 2015]. Arguably, a key aspect of these fundamental abilities of modular learning
is compositionality [Lake et al., 2015, 2016, Liang and Potts, 2015, inter alia], as it is evident in several
cognitive tasks such as language understanding [Partee, 1984, Janssen, 1997]. Models that can learn to do
inference and in particular natural language inference [MacCartney and Manning, 2009, Bowman et al., 2015,
Bowman, 2016, Williams et al., 2018, inter alia] and at the same time are endowed with rich model-building
mechanisms hold the promise to explain such extraordinary abilities [Lake et al., 2016].



DISPATCHED ROUTING NETWORKS

Previous work has applied modular approaches to a variety of domains important to cognition, and particularly
language, including composition of modules for question-answering [Andreas et al., 2015, 2016, Hu et al.,
2017], language modeling [Kirsch et al., 2018], and natural language understanding[Cases et al., 2019].

In particular, we focus on routing networks [Rosenbaum et al., 2017], self-organizing networks with two
components: a set of function blocks which can be applied to transform the input, and a router which
makes decisions about which function block to apply next. While it has been shown that high-quality
meta-information can be extremely useful for learning in scenarios that require sample efficiency [Cases et al.,
2019], a common case in language understanding, this meta-information is highly problem-dependent, and
oftentimes expensive to create. To compensate, we introduce an additional neural network that is end-to-end
trained: a dispatcher. The dispatcher’s task becomes to functionally replace the meta-information, i.e., to
cluster the samples, so that the router can leverage this new new information to assign a matching path through
the function modules of the routing network for each cluster. Using Recursive Routing Networks [Cases
et al., 2019] (RRNs) augmented with an end-to-end dispatcher, we show strong performance in multi-task
learning scenarios without explicit meta-information available, while exhibiting high levels of generalization
when adapting to new, unseen tasks.

2 Dispatched Routing
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Figure 1: A routing network. The router consists
of a parameterized decision maker that iteratively
selects modules (i.e. trainable functions). Each se-
lected function is then applied to the latest activation,
resulting in a new activation, which can then again
be transformed. The training of a routing network
happens online, i.e., the output of the model is used
to train the transformations using backpropagation
and Stochastic Gradient Descent (SGD), and is simul-
taneously used to provide feedback to the decision
maker.

Routing describes a general paradigm to compositional com-
putation. Any routed model consists of one (or several) sets
of parameterized functions or modules, and a decision making
model that we call a router. Given an input, the router evaluates
the input, and selects and applies a module from the according
set. This yields a new activation, which will again be analyzed
by the router, and again be transformed with a module, until
the router decides to terminate and output the final activation.
As such, every stacked architecture can be routed, in particular
neural, layered architectures.

This general idea of routing, selecting and applying different
transformations in sequence, can be implemented in several
ways. Apart from choosing the transformation within a model
that will be routed, an important decision is the architecture of
the router. Decision making functions such as the one utilized
by the router are oftentimes called a policy, relating to their
extensive investigation in reinforcement learning. As a policy
can be encoded in many ways, from tabular lookup tables to
complex function approximators, one of the most important
questions when designing a routing network is how to encode
that policy. The most intuitive approach is to encode the policy with one function approximator, one neural
network as illustrated in see Figure 2(a), although constraints (in particular dimensionality constraints)
may require multiple approximators in practice. However, different strategies are possible and have been
introduced in Rosenbaum et al. [2017]. The first extension, depicted in Figure 2(b), consists of a different
(sub-) policy for each decision in the routing network. The second introduces a hierarchy in the decision
making process, by introducing a dispatcher policy (Figure 2(c)). This dispatcher assigns samples to different
(sub-) policies, each of which could again be composed as e.g., a per-decision set of policies. Consequently,
the subrouters responsible for all steps after dispatching can rely on much weaker information, not even
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having access to the actual activation. Rosenbaum et al. [2017] show that both of these steps reduce the
complexity of training the routing policy, a plausible claim considering their divide-and conquer nature.

While aiming to solve the same problem, a dispatched routing network can be characterized quite differently
than a non-dispatched model. The difference lies in how to describe the assignment that routing does when
choosing different routing paths. For networks with a single policy, this assignment happens in the space of
activations. For a dispatched network, however, samples are clustered while still in input-space, before any
future evaluation in activation space may happen. Rosenbaum et al. [2017], Cases et al. [2019] utilized this
fact to assign samples based on task-labers, effectively using clusters given externally by the dataset. Such an
approach could be seen as offline dispatching, as the data is clustered in a separate process before training a
routing network, and is contrary to online dispatching, where the clusters are learned simultaneously with the
routing network.

2.1 Advantages of dispatching

While a ‘single policy’ routing architecture, illustrated by Figure 2 (a), is conceptually simpler, dispatching
has several advantages over this form of routing, which roughly fall into two different groups: the first
concerns how dispatching addresses the challenges raised in Rosenbaum et al. [2019] (see below), and the
second regards its interpretability and versatility.

Rosenbaum et al. [2019] detail several challenges to all compositional architectures, and to routing in
particular. The most important for dispatching are the extrema of the “flexibility dilemma for modular
learning”: collapse and overfitting. The flexibility dilemma describes problems arising from a modular
architecture’s ability to locally assign samples to different models, or paths in a routing network. For collapse,
the modular architecture fails to find useful local approximations, and only uses a few (or even only one)
coarse grouping of samples. For overfitting, it finds too many clusters, thereby possibly allowing a separate
model for only a few (or even only one) samples. Balancing these is thus one of the most important challenges
for designing any kind of modular architecture. However, if the right local approximations are found, routing
can create highly flexible models that exactly capture the nature of the desired function, leading to impressive
generalization properties.

Dispatching can have special properties that can help to find the right local approximations in a unique way.
The first is that the dispatcher’s objective function does not have to be the same as the one of the routing
network. Given that the dispatcher is trained on the loss of the routing network or some derivative thereof, it
can be regularized with an additional loss (or, for RL dispatchers, reward). This idea will be discussed in
more detail below, and is depicted in Figure 2(c). If appropriately chosen, this regularization loss can prevent
collapse. However, it can also prevent overfitting, as it may prevent the formation of very small clusters.

The second advantage of dispatching lies in assigning samples in input-space exclusively. Given that there is
only one decision to take, namely assigning a sample to a cluster, the number of paths is non-combinatorial,
which adds an additional safeguard against overfitting. The fact that surface properties, and not activations,
should decide on the clusters of a routing network, additionally make the routing process much easier, thereby
stabilizing the learning process.

The third advantage is how dispatching can be combined with well-investigated strategies for clustering. As
argued in the previous section, dispatching effectively clusters samples which are then uniformly routed. This
allows us to interpret these clusters and to investigate if there is a relationship between these ‘functional’
clusters and clusters naturally ascribed by humans [cf. Potts, 2019].

Additionally, while the natural question is which clusters are learned when dispatching, we may also ask how
useful existing clustering strategies are to solving the problem at hand. This means that we could cluster
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(c) online, multiple targets
Figure 2: Dispatching strategies. In offline dispatching, the dispatching strategy πd is decided by information provided externally
(m), and the dispatcher is not trained as part of the routing network, i.e., it is not part of the feedback loop. In online dispatching, the
dispatcher is trained, and is thus part of the feedback loop. When trained on the same target, the objective function of the dispatcher
is the same as for the router. When trained on a different target, the dispatcher has another objective function (and is part of another
feedback loop), and is trained on both that target and the target provided by the routing network.

the data, either in an online or offline fashion, and use these clusters as ‘tasks’, looking at the resulting
performance of the routing network.

2.2 Dispatching Strategies

We have introduced several kinds of dispatching. The first is offline dispatching, the second is online
dispatching with the same objective function (as in the original formulation by Rosenbaum et al. [2017] and
in the extension in Cases et al. [2019]), and the third is online dispatching with multiple objectives. We will
investigate all three, where we will focus on using existing clustering algorithms for offline dispatching, as
we want to move beyond relying on provided meta-information.

2.2.1 Offline Dispatching by Clustering

Offline dispatching relies on cluster-information available before the routing network is trained. The best
investigated clusters are human annotated task-labels [Rosenbaum et al., 2017, Cases et al., 2019]. However,
a natural extension are clusters that are not intertwined with the training of the routing network, but that are
still learned, if separately. This may find clusters that are relevant for the objective of the routing problem.

The easiest offline clusters can be retrieved by computing an encoding of the word sequences in the given
samples, which will later be clustered. For Natural Language Inference (the domain we focus on in this
work), previous work exclusively clustered samples based on the premise of the premise-hypothesis pairs,
motivating us to do the same. The simplest of these encodings are CBOW encodings that simply add the
respective word (GloVe, Pennington et al. [2014]) embeddings to form a single vector representation. This
vector representation, in turn, can be clustered by any clustering algorithm. For this report, we consider two:
K-Means clustering and Agglomerative Clustering.

2.2.2 Online Dispatching without an additional Objective Function

Both this kind of dispatching and the following one introduce a clear hierarchy in the online decision making
process, as the dispatcher acts as an additional step in sample-space that assigns a sample to a secondary
agent which will do the actual routing. In this case, the dispatcher is trained on the same objective as the
other routing decisions – which might be final performance, or any other function of the final output of the
routed model.

4



DISPATCHED ROUTING NETWORKS

In contrast to Cases et al. [2019], where this kind of dispatching was shown to not generalize well, we
experiment with a dispatcher that encodes the input with a sequential network, and not with a CBoW
representation.

2.2.3 Online Dispatching with an additional Objective Function

This approach to dispatching tries to mitigate both the problems of offline dispatching and single objective
online dispatching by merging the core ideas of both. It achieves this by training the dispatcher on a
combination of an external objective, such as general purpose clustering objective, and the final routing
objective. This can be achieved by optimizing the dispatcher, a reinforcement learning agent, on a weighted
sum of rewards corresponding to these objectives:

Rtotal = αRdispatcher + (1− α)Rext (1)
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Figure 3: Autoencoder dispatching. The dispatcher chooses an
action which determines both the sub-policy routing the sample
and the autoencoder. The dispatcher is then trained on feedback
from both the sub-policy routing and the autoencoder. The
autoencoder may be replaced with any other single-step routing
network, with any target z.

One very simple external objective is self-reconstruction. That is, we derive the dispatching action by routing
a bottlenecked autoencoder on a sentence encoding, as depicted in Figure 4. This yields natural clusters
that can be trained online, and that can be trained on an objective as a combination of the reconstruction
reward and the routing reward. A natural reconstruction reward is the negative reconstruction loss, following
a reward design introduced in Rosenbaum et al. [2017]:

Rext = −Lreconstruction (2)

Routing an autoencoder works by forcing the information contained in an encoding through a set of selectable
“bottlenecks”. If these are small enough (in terms of parameter count), a router will select different transfor-
mations for different samples, thereby grouping these by reconstruction similarity. The routing component of
the autoencoder can thus be defined as solving the following optimization problem (with M as the set of
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Figure 4: A (routed) bottleneck autoencoder. After the input S
is encoded, the encoding ES is projected to some dimension-
ality dp, and then passed through one of a set of “bottleneck”
modules, {m1,m2,m3}, selected by the autoencoder dispatch-
ing policy πd. These are of the form fcdp,dbn → fcdbn,dp , i.e.,
they first project the input from dimensionality dp to a bottle-
neck dimensionality dbn (such that dbn � dp). The resulting
projection is then projected back from dp to the dimensionality
of the embedding. The entire model, including πd, is trained
on the reconstruction error between ÊS and ES . If dbn is suffi-
ciently small, the πd has to cluster samples by distributing them
over multiple bottleneck modules.
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available modules, Fpre the encoding preprocessing, and Fpost as the postprocessing, E the encoding, S the
phrase and MSE as the mean-squared difference):

m∈M
argmax−MSE(E(S), Fpost(m(Fpre(E(S))))) (3)

However, there are several ways to design the autoencoder by choosing different encodings.

CBOW Autoencoding In the simplest case, the autoencoder works immediately on a plain CBOW encoding
on some word embedding, GloVe in our case. The autoencoder encoding is then defined as (with S as the
premise, and w as the words in S):

Enc(S) =
∑
w∈S

GloV e(w) (4)

CBOW Autoencoding with Attention In this modification, the autoencoder works on a weighted CBOW
encoding, where a learned weight is associated to each word. This approach is commonly known as an
attention model. The corresponding autoencoder encoding is defined as (with S as the premise, w as the
words in S, and A as the attention function):

Enc(S) =
∑
w∈S

A(w)GloV e(w) (5)

One-hot (unencoded) Autoencoding This simpler version of an autoencoder does not rely on an pre-
trained embedding, but instead uses a sum of one-hot word representations. This forces the autoencoder to
develop a simple language model. The encoding is (with S as the premise, and w as the words in S):

Enc(S) =
∑
w∈S

OneHot(w) (6)

Sentence-level Autoencoding Another autoencoder we experiment with is a full sequence-to-sequence
autoencoder. Here, the input is encoded using a recurrent neural network (an LSTM, to be precise). As
before, this encoding is then pushed through a routed bottleneck. Finally, the encoding is used as the input to
a sequential decoder that reconstructs the full input sequence. The encoding is (with S as the premise, and w
as the words in S):

Enc(S) = SEQ(S) (7)

3 Related Work

Routing Networks are an extension of early work on task-decomposition modular networks [Jacobs et al.,
1991a] and mixtures of experts architectures [Jacobs et al., 1991b, Jordan and Jacobs, 1994] that make hard
selections over modules in order to better navigate the transfer-interference trade-off of weight sharing during
learning [Riemer et al., 2019]. Routing Networks provide a bridge between a body literature focused on
adaptive weight sharing during multi-task learning [Stollenga et al., 2014, Rusu et al., 2016, Misra et al., 2016,
Riemer et al., 2016, Aljundi et al., 2017, Fernando et al., 2017, Ruder et al., 2017, Rajendran et al., 2017] and a
body of literature focused on neural architecture search [Zoph and Le, 2017, Baker et al., 2017, Miikkulainen
et al., 2017, Liang et al., 2018]. In particular, Routing Networks provide a generalization of "one-shot" neural
architecture search [Brock et al., 2017, Pham et al., 2018, Bender et al., 2018, Ramachandran and Le, 2019].
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Our work is inspired by past work that has leveraged data clusters or task clusters based on natural regularities
in the data as a means of guiding the transfer learning process [cf. Cases et al., 2019]. In particular our
approach of using autoencoder to help control dispatching in routing networks is related to the work of
Aljundi et al. [2017] who leveraged an autoencoder to make expert selection decisions during lifelong learning
in application to a mixtures of experts architecture. The main conceptual difference in our work is that the
autoencoder helps inform the decision of which routing sub-policy to select as opposed to helping select
the modules themselves. Our work also shares similar motivation with past work that leveraged task and
data clusters to improve multi-task learning [Kang et al., 2011, Kumar and Daume III, 2012, Crammer and
Mansour, 2012, Barzilai and Crammer, 2015, Yang and Hospedales, 2016, Murugesan et al., 2017, Yu et al.,
2017] and to improve meta-learning when no task labels are available [Hsu et al., 2019].

4 Experiments

In this section, we evaluate the proposed architectures on the Stanford Corpus of Implicatives (SCI) [Cases
et al., 2019]. This corpus consists of approximately 11k triplets of premise, hypothesis pairs together with
a label that indicates the entailment relation between the premise and hypothesis, modeled after other NLI
coprus [Bowman et al., 2015, Williams et al., 2018]. We chose it as it comes in four different variations, each
challenging a different aspect of generalization. For a complete description of the dataset and its properties,
see Cases et al. [2019].

4.1 Quantitative Results

Joint & Match Disjoint Mismatch Nested
Enc Dispatching #class Accuracy Entr Accuracy Entr Accuracy Entr Accuracy Entr
Seq not routed 1 67.04±2.36 0 63.52±2.00 0 59.32±2.87 0 57.69±2.75 0

not routed 1 57.26±0.18 0 55.68±0.47 0 53.41±0.86 0 50.98±0.92 0

CBOW

Offline
Signatures 15 74.95±0.64 1.82 73.91±0.54 1.8 71.08±0.52 1.82 75.43±0.29 0.46
K-Means 5 62.26±2.79 0.45 61.68±1.4 0.35 59.29±0.59 0.42 71.67± 4.03 0.39
Aggl 5 64.63±0.62 0.44 60.86±0.75 0.46 61.56±0.55 0.43 72.45± 1.79 0.59

Online

Basic ≤ 20 71.4±1.39 0.56 64.13±0.3 0.45 67.77±0.61 0.45 83.24±0.58 0.62
AE ≤ 20 70.42±0.83 2.58 61.31±0.97 0.84 63.08±0.94 0.59 79.38± 0.99 0.31
AE Attn ≤ 20 72.7±0.21 0.46 65.05±0.78 0.45 67.74±0.23 0.44 80.35±1.42 0.41
AE OH ≤ 20 70.89±0.98 0.71 61.94±1.12 0.49 64.01±0.53 0.68 79.77±2.87 0.4
AE Seq ≤ 20 70.49±0.7 0.45 63.3±1.12 0.55 65.43±0.53 0.45 82.37±2.6 0.41

Table 1: Test results on SCI, averaged over five runs. Each entry consists of the test accuracy with confidence intervals and the
entropy of the learned dispatching policy at test time. Each result is selected from the average best-of-five dev results from a
hyperparameter sweep and may thereby have different hyperparameter settings. Bold font marks the average best score, and italics
mark scores whose confidence intervals overlap with the best scores.

We begin by evaluating the performance on SCI over the different approaches to dispatching and the choice of
router training algorithm, as these are the two most relevant design questions. To address the issues raised in
Rosenbaum et al. [2019], we will not only evaluate the different architectures on test accuracy, but also on the
dispatching selection entropy (to discuss the problem of collapse). See the appendix for the train accuracies
to get a sense of the problem of overfitting. For space reasons, the full table of all results, including the train
accuracy, is in the appendix (see Table 8), while a summary is shown in Table 1.

The baseline to these experiments are the results presented in Cases et al. [2019], i.e., the (unrouted) sequential
model, the (unrouted) CBOW model and word-level CBOW routing, conditioned on signatures (the first three
rows of Tables 1, 8). The architecture is the same architecture, i.e., routing the individual word projections
of a CBOW encoding. The questions we try to answer here are: (1) Is it possible to achieve the same
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performance (in particular the impressive boost of simple bag of words architectures) without relying on
meta-information, but relying on dispatching only? (2) How does an end-to-end trained dispatcher generalize
to the more difficult variants of SCI, disjoint, mismatch, and nested? (3) Are there substantial structural
overlaps with the externally provided ‘tasks’, i.e., the signatures?

In addition, we study the effect of the most important hyperparameter choices on the base dataset (joint)
in Figures 5 through 6, depicting dev results over training over 300 epochs. We begin with these, as they
determine the design choices for the results discussed later.

Design and Hyperparameter Choices Figure 5 shows the impact the choice of decision making algorithm
has on the learning behavior, on three exemplary hyperparameter choices. These re-iterate the results from
Rosenbaum et al. [2019] that value-based approaches to learning reliably outperform policy gradient based
approaches, including the Gumbel reparameterization trick. However, within the two value based approaches
evaluated, Q-Learning and Advantage learning, the picture is less clear. While Advantage learning learns
more reliably and reaches comparable performance in nearly all cases, as e.g., in Figure 5(a), Q-Learning
may outperform Advantage learning for specific combinations of hyperparameters, as for Figure 5(c).
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Figure 5: Comparison of decision making algorithms over different hyperparameter settings
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Figure 6: Comparison of dispatching architectures over different hyperparameter settings

Another important design choice regards the design of the reward function used to train the router, and,
consequently, also partially the dispatcher. As described in Rosenbaum et al. [2017, 2019], the quality of
the routing decisions can be determined by not only the design of the final routing reward, but also by a
‘collaboration’ reward that regularizes diversity of the decision making within the router.
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For the final routing reward, we evaluate two choices. The first is a “Correct classified reward” of +1 for a
correct classification, and −1 for incorrect classification. The other is the negative of the classification loss
(negative as we minimize losses, but maximize RL rewards). For the collaboration reward, which is computed
as a fraction of the overall probability of choosing a module, we evaluate values of −0.1, incentivizing
diversity as in Cases et al. [2019] and 0.0, i.e., no collaboration reward. We found that the generally best
combination is using the correct classified reward with a small diversity reward of −0.1. A figure with
exemplary dev curves is in the appendix, Figure 9.

Finally, Figure 6 shows the dev results of the different dispatching strategies over 300 training epochs.
They, again, show that the respective learning behavior strongly depends on outside factors, as e.g., the
plain autoencoder depicted in Figure 6(a) does not learn competetive predictions, while it does in the other
cases. While we originally expected the one-hot autoencoder to learn the slowest, we found that the plain
autoencoder-dispatcher can take noticeably longer to learn. Another important observation is that, generally,
the sweet spot for entropy in regard to performance is somewhere smaller than one; if a dispatcher maintains
a higher entropy, it does not achieve good performance.

Offline Dispatching We show results for offline dispatching, i.e., for clusters computed offline before
training of the routing network in Table 1. We ran experiments with 5, 10 and 20 clusters and found that 5
clusters works best on average, and is always within the standard deviation of the best performing setting.
These clusters are generally inferior to the provided signatures. However, they do improve performance over
their unrouted baseline. For the mismatched and nested datasets, they allow the routed model to even beat the
generally much stronger sequential baseline. In particular for the nested dataset, they beat the baselines by at
least 14 % on average. For the two clustering techniques compared, agglomerative clustering generally works
better than k-means clustering.

Online Dispatching Table 1 show the test scores of the different online dispatching algorithms after 300
epochs. They allow us to draw some clear and some not so clear conclusions:

(1) The best performing dispatching strategies are the autoencoding with attention and, surprisingly,
basic dispatching without an external dispatching signal. While these results (mostly) not competitive
with the results relying on human designed signatures, they clearly outperform all baselines.

(2) The results are generally very stable, with most confidence intervals within less than ±1% accuracy.

(3) With the exception of the autoencoder dispatching, most of the dispatching entropy results are in
the 0.4− 0.5 range, which generally corresponds to two dominant dispatching clusters with minor
deviations.

(4) The most impressive result is the ability to generalize to longer (nested) sequences, even outperform-
ing the results relying on signatures.

The interpretation of these results is less obvious. (1) That attention helps the autoencoder is not surprising,
as it allows the encoding to learn to ignore stop words, names and other words irrelevant to the implication
question. However, it is surprising that the dispatching without any external loss signal is able to learn as
well as it does, in particular as Rosenbaum et al. [2017], Cases et al. [2019] explicitly claim that this does not
work well. The main architectural difference, arguably explaining this gap, is that our basic dispatcher does
not use a BoW encoding, but a sequential encoding instead. Apparently, the different in expressivity between
these two is sufficient to learn meaningful clusters.

(2) does not only hold for the accuracies, but generally also extends to the entropy results. Their confidence
intervals are shown in the appendix. A particularly interesting result is the plain autoencoder result on joint
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& match, as it achieves a good score, while maintaining extremely high entropy of 2.58. Additionally, the
entropy has a confidence interval of ±0.01, effectively implying that this model learns highly similar cluster
distributions over all runs. This strongly suggests that a dispatcher learns meaningful and global clusters, and
not only locally optimal splits.
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Figure 7: Comparison of the behavior of different dispatching strategies. For each subplot, the topmost graph shows the distribution
of the ground truth signatures; the center graph shows the dispatching distribution per signature, and the lowest shows the overall
dispatching distribution.

(3) holds to some degree for all dispatching strategies, except for the plain autoencoder. However, it is clearly
impacted by the collaboration reward value. Consider Figure 7 that depicts the dispatching distributions for
three of the best performing models. Interestingly, a negative collaboration reward, which should theoretically
increase entropy, causes a fairly even split between two dispatching clusters only. Only no collaboration
reward will create naturally distributed behavior. These results generalize to all other experimental runs we
did. Unfortunately, there appears to be only little correlation between signatures and learned dispatching
clusters.

(4) This result suggests that a dispatched routing network’s strongest point is its ability to generalize. What
happens intuitively is that a dispatcher can analyze the composition of an SCI premise and then correctly
select function blocks that will mirror this composition.

5 Conclusion

In this report, we evaluated several strategies to design a dispatcher, a hierarchical routing element that
clusters samples into similarity groups that share a routing path. Considering the main challenges described
in Rosenbaum et al. [2019], overfitting and collapse, we designed two main groups of dispatchers: a “plain”
version that is purely trained on the routing rewards, and a version that is trained on an additional outside
signal. We found that a natural signal is self-reconstruction in form of an autoencoder. This allows the
network to both stabilize, and to learn naturally occurring clusters. Additionally, this external signal makes
these clusters less prone to collapse, and additionally regularizes sufficiently to not overfit too badly.

We evaluated on the Stanford Corpus of Implicatives (SCI), as it comes in several variations, each of which
testing a different way to generalize. Compared with the existing baselines published in Cases et al. [2019],
we found that our proposed dispatched routing architectures mostly fall short of the performance of routing
architectures relying on high-quality, hand-labeled clusters, but still considerably outperform their respective
base architectures. In particular, for the ‘nested’ variation of SCI which composes different signatures, our
dispatching architectures were able to learn impressively useful clusters, outperforming even hand-labeled
clusters.
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Figure 8: Results on SCI. Each entry consists of
the test accuracy with confidence intervals, the train
accuracy with confidence intervals, and the entropy of
the learned dispatching policy at test time, also with
confidence intervals. All models are trained with an
Advantage learning router.

14



DISPATCHED ROUTING NETWORKS

30

40

50

60

70

ac
cu

ra
cy

 in
 %

CorrectClassifiedReward NegLossReward

0 50 100 150 200 250 300
epochs

1

2

en
tro

py

(a) Basic Dispatcher; Advantage Learn-
ing; Collab Reward -0.1

30

40

50

60

70

ac
cu

ra
cy

 in
 %

-0.1 0.0

0 50 100 150 200 250 300
epochs

0.5

1.0

1.5

en
tro

py

(b) Basic Dispatcher; Q-Learning; Cor-
rect Classified Reward

30

40

50

60

70

ac
cu

ra
cy

 in
 %

-0.1 0.0

0 50 100 150 200 250 300
epochs

0

1

2

en
tro

py

(c) Basic Dispatcher; Advantage Learn-
ing; Correct Classified Reward

Figure 9: Comparison of reward type (subfig a) and collaboration reward values (subfigs b, c) over different hyperparameter settings
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