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Human brains flexibly combine the meanings of words to compose
structured thoughts. For example, by combining the meanings of
“bite,” “dog,” and “man,” we can think about a dog biting a man,
or a man biting a dog. Here, in two functional magnetic resonance
imaging (fMRI) experiments using multivoxel pattern analysis (VIVPA),
we identify a region of left mid-superior temporal cortex (ImSTC)
that flexibly encodes “who did what to whom” in visually presented
sentences. We find that ImSTC represents the current values of ab-
stract semantic variables (“Who did it?” and “To whom was it done?”)
in distinct subregions. Experiment 1 first identifies a broad region
of ImSTC whose activity patterns (i) facilitate decoding of structure-
dependent sentence meaning (“Who did what to whom?”) and
(ii) predict affect-related amygdala responses that depend on this
information (e.g., “the baby kicked the grandfather” vs. “the grand-
father kicked the baby"). Experiment 2 then identifies distinct, but
neighboring, subregions of ImSTC whose activity patterns carry in-
formation about the identity of the current “agent” (“Who did it?")
and the current “patient” (“To whom was it done?”). These neigh-
boring subregions lie along the upper bank of the superior temporal
sulcus and the lateral bank of the superior temporal gyrus, respec-
tively. At a high level, these regions may function like topographi-
cally defined data registers, encoding the fluctuating values of
abstract semantic variables. This functional architecture, which in
key respects resembles that of a classical computer, may play a crit-
ical role in enabling humans to flexibly generate complex thoughts.
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Yesterday, the world’s tallest woman was serenaded by 30
pink elephants. The previous sentence is false, but perfectly
comprehensible, despite the improbability of the situation it
describes. It is comprehensible because the human mind can flex-
ibly combine the meanings of individual words (“woman,” “sere-
nade,” “elephants,” etc.) to compose structured thoughts, such as
the meaning of the aforementioned sentence (1, 2). How the brain
accomplishes this remarkable feat remains a central, but unan-
swered, question in cognitive science.

Given the vast number of sentences we can understand and
produce, it would be implausible for the brain to allocate individual
neurons to represent each possible sentence meaning. Instead, it is
likely that the brain employs a system for flexibly combining rep-
resentations of simpler meanings to compose more complex
meanings. By “flexibly,” we mean that the same meanings can be
combined in many different ways to produce many distinct complex
meanings. How the brain flexibly composes complex, structured
meanings out of simpler ones is a matter of long-standing debate
(3-10).

At the cognitive level, theorists have held that the mind encodes
sentence-level meaning by explicitly representing and updating the
values of abstract semantic variables (3, 5) in a manner analogous
to that of a classical computer. Such semantic variables correspond
to basic, recurring questions of meaning such as “Who did it?” and
“To whom was it done?” On such a view, the meaning of a simple
sentence is partly represented by filling in these variables with
representations of the appropriate semantic components. For ex-
ample, “the dog bit the man” would be built out of the same
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semantic components as “the man bit the dog,” but with a reversal
in the values of the “agent” variable (“Who did it?”) and the
“patient” variable (“To whom was it done?”). Whether and how
the human brain does this remains unknown.

Previous research has implicated a network of cortical regions in
high-level semantic processing. Many of these regions surround the
left sylvian fissure (11-19), including regions of the inferior frontal
cortex (13, 14), inferior parietal lobe (12, 20), much of the superior
temporal sulcus and gyrus (12, 15, 21), and the anterior temporal
lobes (17, 20, 22). Here, we describe two functional magnetic res-
onance imaging (fMRI) experiments aimed at understanding how
the brain (in these regions or elsewhere) flexibly encodes the
meanings of sentences involving an agent (“Who did it?”), an action
(“What was done?”), and a patient (“To whom was it done?”).

First, experiment 1 aims to identify regions that encode struc-
ture-dependent meaning. Here, we search for regions that differ-
entiate between pairs of visually presented sentences, where these
sentences convey different meanings using the same words (as in
“man bites dog” and “dog bites man”). Experiment 1 identifies a
region of left mid-superior temporal cortex (ImSTC) encoding
structure-dependent meaning. Experiment 2 then asks how the
ImSTC represents structure-dependent meaning. Specifically, we
test the long-standing hypothesis that the brain represents and
updates the values of abstract semantic variables (3, 5): here, the
agent (“Who did it?”) and the patient (“To whom was it done?”).
We search for distinct neural populations in ImSTC that encode
these variables, analogous to the data registers of a computer (5).

Experiment 1

In experiment 1, subjects undergoing fMRI read sentences de-
scribing simple events. Each sentence expressed a meaning, or
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“proposition,” which could be conveyed in either the active or
passive voice (e.g., “the ball hit the truck”/“the truck was hit by
the ball”). Each such sentence could be reversed to yield a mirror
image proposition (e.g., “the truck hit the ball”/“the ball was hit
by the truck”), which was also included in the stimulus set. We
call these “mirror image proposition pairs.” Members of these pairs
contain the same words and have the same syntactic structure, but
the words are differentially assigned to the agent and patient roles
to form different sentence-level meanings.

A region encoding the meanings of these sentences should have
the following two properties. First, patterns of activity in such a
region should differentially encode members of mirror image
propositions pairs. For example, the propositions conveyed by “the
truck hit the ball” and “the ball hit the truck” should elicit distinct
patterns of activity. Second, the instantiation of such patterns
should predict downstream neural responses that depend on un-
derstanding “who did what to whom.” For example, patterns re-
lated to sentence-level meaning should predict differential affective
responses to “the grandfather kicked the baby” and “the baby
kicked the grandfather.” Experiment 1 used two key analyses,
corresponding to these two functional properties. First, we ap-
plied multivoxel pattern analysis (23-25) and a whole-brain
searchlight procedure (26) to identify sets of contiguous voxels
that distinguish between members of mirror image proposition
pairs. Second, we developed a pattern-based effective connec-
tivity (PBEC) analysis to determine whether patterns related to
affectively salient sentences (e.g., “the grandfather kicked the
baby”) mediate the relationship between the sentence presented
and affective responses elsewhere in the brain. Jointly, these
analyses establish candidate regions for encoding structure-
dependent meaning that can be further probed in experiment 2.

Whole-Brain Searchlight Analysis. First, using a linear classifier, we
searched for regions whose patterns of activity distinguished
between members of mirror image proposition pairs: for exam-
ple, between the proposition conveyed by “the truck hit the ball”
(as well as “the ball was hit by the truck”) and the proposition
conveyed by “the ball hit the truck” (as well as “the truck was hit
by the ball”). The use of mirror image propositions ensures that
basic lexico-semantic content, syntactic structure, and summed
word frequency are matched between the propositions to be
discriminated. Active and passive forms of each proposition were
treated as identical in all analyses, allowing us to identify un-
derlying semantic representations, controlling for visual features
of the stimuli and surface syntax. All propositions were pre-
sented separately, and multiple times, to better estimate the
pattern of activity evoked by each proposition. For experiment 1,
classifiers were thus tested on their ability to discriminate be-
tween new tokens of the mirror image propositions on which
they were trained.

For this initial searchlight analysis, we used four mirror image
pairs of propositions, two involving animate entities and two
involving inanimate entities. For each subject (n = 16), we av-
eraged classification accuracies across these four pairwise classifi-
cation problems to yield a map of the mean classification accuracy
by region. Group-level analysis identified a region of ImSTC (k =
123; Talairach center: —59, —25, 6) that reliably distinguished be-
tween mirror image propositions (P < 0.0001, corrected; mean
accuracy, 57%) (see left temporal region in Fig. 1). This result was
not driven by a particular subset of the stimuli (Supporting In-
formation). A second significant cluster was discovered along the
right posterior insula/extreme capsule region (P < 0.001, corrected,;
37, =9, 6; mean accuracy, 56.4%). However, this second region
failed to meet additional, minimal functional criteria for encoding
sentence meaning (Supporting Information).

PBEC Analysis. The foregoing searchlight analysis suggests that
ImSTC represents critical aspects of sentence-level meaning. If

20f 6 | www.pnas.org/cgi/doi/10.1073/pnas.1421236112

this hypothesis is correct, then the particular pattern instantiated
in ImSTC should also predict downstream neural responses when
those responses depend on an understanding of “who did what to
whom.” Our second analysis in experiment 1 attempts to de-
termine whether the patterns of activity in ImSTC predict af-
fective neural responses elsewhere in the brain.

To test this hypothesis, we used, within the same experiment, an
independent set of mirror image proposition pairs in which one
proposition is more affectively salient than its counterpart, as in
“the grandfather kicked the baby” and “the baby kicked the
grandfather.” (Differences in affective salience were verified with
independent behavioral testing. See Supporting Information.) We
predicted that patterns of activity in ImSTC (as delineated by the
independent searchlight analysis) would statistically mediate the
relationship between the sentence presented and the affective
neural response, consistent with a causal relationship (27). This
PBEC analysis proceeded in three steps.

First, we confirmed that patterns of activity in the region of
ImSTC identified by the searchlight analysis can discriminate
between these new mirror image propositions [f;5) = 3.2; P =
0.005; mean accuracy, 58.3%], thus replicating the above findings
with new stimuli. Second, we identified brain regions that re-
spond more strongly to affectively salient propositions (e.g., “the
grandfather kicked the baby” > “the baby kicked the grandfa-
ther”). This univariate contrast yielded effects in two brain re-
gions, the left amygdala (—28, —7, —18) and superior parietal
lobe (38, —67, 47), (P < 0.001, corrected). Given its well-known
role in affective processing (28), we interpreted this amygdala
response as an affective signal and focused on this region in our
subsequent mediation analysis. Third, and most critically, we
examined the relationship between patterns of activity in ImSTC
and the magnitude of the amygdala’s response. The first of the
above analyses shows that “the grandfather kicked the baby”
produces a different pattern in ImSTC than “the baby kicked the
grandfather” (etc.). If these patterns actually reflect structure-
dependent meaning, then these patterns should mediate the
relationship between the sentence presented and the amygdala’s
response on a trial-by-trial basis.

To quantify the pattern of activity in ImSTC on each trial, we
used the signed distance of each test pattern from the classifier’s
decision boundary (Supporting Information). This signed distance
variable reflects the content of the classifier’s decision regarding
the sentence (the sign), as well as what one may think of as its
“confidence” in that decision (the distance). According to our
hypothesis, trials in which the pattern is confidently classified as
“the grandfather kicked the baby” (etc.), rather than “the baby
kicked the grandfather” (etc.), should be trials in which the
amygdala’s response is robust. Here, we are supposing that the
classifier’s “confidence” will reflect the robustness of the se-
mantic representation, which in turn may influence downstream
affective responses in the amygdala.

As predicted, the pattern of activity instantiated in ImSTC pre-
dicted the amygdala’s response [¢;5) = 3.96, P = 0.0013], over and
above both the mean signal in ImSTC and the content of the
stimulus. The pattern of activity in the ImSTC explains unique
variance in the amygdala’s response, consistent with a causal model
whereby information flows from the sentence on the screen, to a
pattern of activity in the ImSTC, to the amygdala [P < 0.01, by
Monte Carlo simulation (29, 30); Sobel test (27), z = 247, P =
0.013] (Fig. 1). The alternative model reversing the direction of
causation between the ImSTC and amygdala was not significant
(Monte Carlo, P > 0.10; Sobel, z = 1.43, P = 0.15), further sup-
porting the proposed model.

There are several possible sources of trial-to-trial variability in
ImSTC’s responses (see Supporting Information for more dis-
cussion). For example, a participant’s inattention might disrupt
the semantic representation in ImSTC, making the trial more
difficult to classify and, at the same time, making the amygdala
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Fig. 1. Model of information flow from stimulus to
ImSTC to amygdala in experiment 1. (A) A pattern
/ classifier determines which of two propositions was

The grandfather

kicked the baby

The baby kicked the
grandfather

Sobel Test: z = 2.47, p=0.013
99% Bootstrap Cl 0.007-0.094

response weaker than otherwise expected. Regardless of the
source of the variation in these patterns, the present data provide
evidence that neural representations of structure-dependent mean-
ings in ImSTC predict downstream affective responses, consistent
with our causal model.

Thus, experiment 1 shows that a region of ImSTC meets our two
initial functional criteria for a region encoding structure-dependent
sentence meaning. First, its patterns of activity differentiate be-
tween mirror image propositions containing the same words and
syntactic structure. Second, these patterns statistically mediate the
relationship between the sentence presented and affective neural
responses that depend on understanding “who did what to whom.”
Experiment 1 does not, however, explain how this region encodes
such information. Experiment 2 aims to further validate the results
of experiment 1 and to illuminate the mechanism by which this
region encodes these structure-dependent meanings.

Experiment 2

In experiment 2, we test the hypothesis that ImSTC flexibly en-
codes these meanings (at least in part) by explicitly representing
the values of the agent (“Who did it?”) and the patient (“To
whom was it done?”) (5). To evaluate this possibility, we
searched for subregions of ImSTC whose patterns of activity
reflect the current value of these variables. We performed sep-
arate searches for each variable, searching for subregions
encoding “Who did it?” and “To whom it was done?” across verb
contexts. Thus, we aimed to identify regions that are specialized
for representing the agent and patient variables as such.

Experiment 2 (n = 25) used a stimulus set in which four nouns

“man,” “girl,” “dog,” and “cat”) were assigned to the agent and
patient roles for each of five verbs (“chased,” “scratched,” etc.),
in both active and passive forms (Fig. 24). Thus, subjects un-
dergoing fMRI read sentences such as “the dog chased the man”
and “the girl was scratched by the cat,” exhausting all meaningful
combinations, excluding combinations assigning the same noun
to both roles (e.g., “the man chased the man”).

We acquired partial-volume, high-resolution (1.5-mm- iso-
tropic voxels) functional images covering the ImSTC. We used
separate searchlight analyses within each subject to identify
subregions of ImSTC encoding information about the identity of
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presented using activity in ImSTC. Distance from the
classification boundary indicates the extent to which
a learned pattern was instantiated. The red region
corresponds to the emotionally evocative proposi-
tion (e.g., “the grandfather kicked baby”), whereas
blue corresponds to the less evocative proposition
("the baby kicked grandfather”). (B) For each trial,
the classifier's signed distance from the classification
boundary was transformed by a sigmoidal function
and used to predict the mean level of activity in the
left amygdala. (C) Patterns in ImSTC mediate the
relationship between the proposition on the screen
: and the amygdala’s response, consistent with a
=5 model according to which the ImSTC encodes the
structured representations necessary to generate an
emotional response.

the agent or patient (Fig. 2 B and C). For our principal search-
light analyses, four-way classifiers were trained to identify the
agent or patient using data generated by four out of five verbs.
The classifiers were then tested on data from sentences con-
taining the withheld verb. For example, the classifiers were
tested using patterns generated by “the dog chased the man,”
having never previously encountered patterns generated by
sentences involving “chased,” but having been trained to identify
“dog” as the agent and “man” as the patient in other verb con-
texts. This procedure was repeated holding each verb’s data out
of the training set, and the results were averaged across cross-
validation iterations. Thus, this analysis targets regions that in-
stantiate consistent patterns of activity for (for example) “dog as
agent” across verb contexts, discriminable from “man as agent”
(and likewise for other nouns). A region that carries this in-
formation therefore encodes “Who did it?” across the nouns and
verb contexts tested. This same procedure was repeated to de-
code the identity of the patient.

These searchlight analyses revealed distinct subregions of ImSTC
that reliably carry information about the identity of the agent and
the patient (Fig. 34). Within the anterior portion of ImSTC, a
medial subregion located on the upper bank of the superior tem-
poral sulcus (STS) encoded information about the identity of the
agent (P < 0.01, corrected; —46, —18, 1). A spatially distinct lateral
subregion, encompassing part of the upper bank of the STS, as well
as the lateral superior temporal gyrus (STG) carried patient in-
formation (P < 0.0001, corrected; —57, —10, 2) across subjects.
These anterior agent and patient clusters are adjacent, but non-
overlapping in this analysis. A follow-up analysis using independent
data to define each participant’s agent and patient clusters found
that these subregions are significantly dissociable by their in-
formational content [Fgregionxcontent(1,24) = 12.99, Pperm = 0.001]
(Fig. 3). This searchlight analysis also revealed a second agent
cluster, posterior and superior to the clusters described above, lo-
cated primarily within the posterior STS (P < 0.02, corrected; —57,
—37, 7). Post hoc analyses found the classification accuracies driving
these results to be only modestly above chance levels of 25%, but
statistically reliable across our set of 25 subjects (mean accuracies
across subjects: anterior agent, 27.1%; posterior agent, 28.1%;
patient, 26.6%).
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As in experiment 1, post hoc analyses ruled out the possibility
that these results were driven by a subset of items, as these regions
were relatively consistent in their ability to discriminate between
particular pairs of nouns and to generalize across the five verb
contexts. (See Supporting Information for detailed procedures and
results for these post hoc analyses.) These results thus suggest that
the regions identified by the experiment 2 searchlight analyses are
generally involved in encoding noun-role bindings across the nouns
and verbs used. No regions of ImSTC carried information about
the surface subject and surface object of the sentence. For example,
no ImSTC region encoded “the dog chased the man” and “the dog
was chased by the man” as similar to each other, but different from
“the man chased the dog” and “the man was chased by the dog.”
Within ImSTC, the encoding appears, instead, to be based on
deeper semantics, encoding the underlying agent and patient of the
sentence, independent of which noun serves as the sentence’s
surface subject or object, consistent with experiment 1.

These findings provide preliminary evidence that these sub-
regions of ImSTC encode the values of the agent and patient
variables. However, it remains open whether and to what extent
these subregions are specialized for representing agent and pa-
tient information—that is, whether they tend to represent one
kind of information and not the other. To address this question,
we conducted planned post hoc analyses that separately defined
agent and patient regions within each subject using data from the
remaining subjects. We assessed the significance of these effects
using both conventional parametric statistics and permutation

the dog chased the man

Fig. 2. Experiment 2 design. (A) Subjects read senten-
ces constructed from a menu of five verbs and four
nouns, with one noun in the agent role and another in
the patient role. (B) For each trial, separate pattern
classifiers attempted to identify the agent and the
patient based on activity within subregions of ImSTC.
(C) Classifiers were trained using data from four of five
verbs and tested on data from the withheld verb. This
required the classifiers to identify agents and patients
based on patterns that are reused across contexts.

training data
the dog scratched the man
the dog scratched the girl
the dog scratched the cat

the girl bumped the cat
the man bumped the cat

the dog approached the man

test data

tests (Supporting Information). Within subjects’ independently
localized patient regions, patient identification accuracy was
significantly greater than agent identification accuracy across
subjects [lateral ImSTC: 24y = 2.96, P = 0.006; permutation test:
0.006]. Within the posterior agent region, agent identification
was significantly above chance [t(4y = 2.38, P = 0.01; permuta-
tion test: P = 0.008]. Within the anterior agent region, the
classification effect was somewhat weaker [f(24) = 2.04, P = 0.02;
permutation test: P = 0.055]. As expected, patient identification
was at chance in both the anterior agent region [¢24) = 0.86, P =
0.2; permutation test: P = 0.22] and the posterior agent region
[t24y = —0.29, P = 0.39; permutation test: P = 0.38]. However,
the direct comparison of accuracy levels for agent and patient
identification was not statistically significant in the anterior agent
region (P = 0.27; permutation test: P = 0.26) or the posterior
agent region (P = 0.15; permutation test: P = 0.15). See Fig. 3B.

To further assess the role specificity of these subregions, we
localized a large portion of the anterior ImSTC in a manner that
was unbiased with respect to its role preference, and then
quantified the average preferences of slices of voxels at each X
coordinate (Supporting Information). We found a clear trend in
role preference along the medial-lateral axis, with medial por-
tions preferentially encoding agent information and lateral por-
tions preferentially encoding patient information (Fig. 3C).
From the present data, we cannot determine whether the ob-
served graded shift in role preference exists within individuals, or

agent . lateral medial
patient
3
identification
performance 2
(t)
1
0 talairach X coordinate
62 -60 -58 -56 -54 -52 -50 -4 Eigt. 3. (A STarc}:nIight Znaly.ses idefntifited_adj?ceSrTmt(,:
= { WY N TR S S
B IMSTC sub-region ut nonoverlapping subregions of anterior Im
. t 2 that reliably encoded information about agent
patient agen identity (medial, blue) and patient identity (lateral,
° 1 red). (B) Post hoc analyses find that these adjacent
§ 1 role preference agent regions differ significantly in the information they
E (t 5 encode. These analyses define each subject’s agent
£ = patient and patient subregions using data from other
a 1 subjects, and the statistics computed within each
(% correct ° 2 subject’s agent/patient region reflect the average
relative to accuracy of all voxel neighborhoods across that re-
chance) agent  patient agent patient gion. (C) Across subjects, medial portions of ante-

identification problem

sub-region X content interaction
F(1, 24) = 12.99, p=0.001
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rior ImSTC preferentially encode agent information,
whereas lateral portions of anterior ImSTC prefer-
entially encode patient information.
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simply results from averaging across individuals exhibiting more
abrupt transitions.

A final searchlight analysis within ImSTC identified two addi-
tional subregions supporting identification of the present verb
(Supporting Information). The anterior verb subregion (P < 0.025;
—61, —15, 2) was adjacent to the patient subregion. The posterior
verb subregion (P < 0.0001; —55, —49, 5) in the posterior STS
partially overlapped with the posterior agent region.

The foregoing analyses strongly suggest that a lateral sub-
region of anterior ImSTC selectively encodes information about
the identity of the current patient, and somewhat less strongly,
that a medial portion of anterior ImnSTC selectively encodes in-
formation about the identity of the current agent. In addition, we
identified two subregions of ImSTC supporting classification of the
verb present on a given trial (Supporting Information). Together,
these results indicate that distinct subregions of ImSTC separately
and dynamically represent the semantic information sufficient to
compose complex representations involving an agent, a patient,
and an action.

A third experiment replicates the findings of experiment 2.
Once again, we find that a medial region of ImSTC encodes
information about the agent while a neighboring lateral region
encodes information about the patient (Supporting Information).

Discussion

The experiments presented here begin to address an important
unanswered question in cognitive neuroscience (2-6): How does
the brain flexibly compose structured thoughts out of simpler
ideas? We provide preliminary evidence for a long-standing
theoretical conjecture of cognitive science: that the brain, on
some level, functions like a classical computer, representing
structured semantic combinations by explicitly encoding the
values of abstract variables (3, 5). Moreover, we find evidence
that the agent and patient variables are topographically repre-
sented across the upper bank of the left STS and lateral STG,
such that adjacent cortical regions are differentially involved in
encoding the identity of the agent and patient. At a high level,
these regions may be thought of as functioning like the data
registers of a computer, in which time-varying activity patterns
temporarily represent the current values of these variables (5). This
functional architecture could support the compositional encoding
of sentence meaning involving an agent and a patient, as these
representations can be simultaneously instantiated in adjacent re-
gions to form complex representations with explicit, constituent
structure. These structured representations may in turn be read by
other neural systems that enable reasoning, decision making, and
other high-level cognitive functions.

The present results are broadly consistent with previous re-
search concerning the neural loci of sentence-level semantic
processing while, at the same time, offering new insight into how
such semantic information is represented. With respect to
functional localization, previous research has implicated the
ImSTC in phrase and sentence-level semantic processing using
both functional neuroimaging and lesion data (11-13, 15, 18, 21).
However, ImSTC is by no means the only region consistently
implicated in higher-order semantic processing, as research has
reliably documented the involvement of the anterior regions of the
temporal lobe (20, 22), left inferior parietal lobe (12, 20), and left
inferior frontal cortices (13, 14). The two studies presented here
suggest that ImSTC may be more narrowly involved in encoding
the values of semantic role variables. This narrower claim is con-
sistent with multiple pieces of preexisting experimental evidence.

First, fMRI studies (15, 31) have found increased activation in
a similar region of mid-left STG/STS in response to implausible
noun-verb combinations that violate a verb’s selectional re-
strictions (e.g., “the thunderstorm was ironed”) (but see ref. 32
for conflicting results). More directly, an fMRI study (21) finds
that the repetition of a sentence’s meaning produces adaptation
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effects in the ImSTC, even when that meaning is expressed using
different surface syntactic forms, such as the active and passive
voice. These semantic adaptation effects occur in mid-STG and
middorsal MTG/ventral STS when sentences are presented au-
rally, and in middorsal MTG/midventral STS when presented
visually. Finally, and perhaps of most direct relevance, patients
with damage to ImSTC have been found to have specific deficits
in determining “who did what to whom” in response to both
sentences and visual scenes representing actions (11). Here, the
locus of damage that most consistently predicts impaired per-
formance across tasks appears to correspond to the anterior
subregion of ImSTC in which we find the agent and patient
variables to be topographically represented.

The present results build on this literature and extend our un-
derstanding in several key ways. First, experiment 1 uses multivar-
iate methods to demonstrate that ImSTC carries information about
sentence-level meaning. Second, experiment 1 employs a PBEC
analysis to link these patterns of activity to affect-related amygdala
responses, consistent with a model whereby ImSTC enables the
comprehension necessary to produce an appropriate affective re-
sponse to a morally salient sentence. Third, and most critically,
experiment 2 provides insight into how the ImSTC encodes sen-
tence-level meaning, namely by representing the values of the agent
and patient variables in spatially distinct neural populations.

Given that the present results were generated using only lin-
guistic stimuli, the current data are silent as to whether these
representations are part of a general, amodal “language of
thought” (33), or whether they are specifically linguistic. In par-
ticular, it is not known whether results would be similar using al-
ternative modes of presentation, such as pictures. We note that the
aforementioned lesion study of ref. 11 reports deficits in compre-
hension of pictorial stimuli following damage to this region. How-
ever, linguistic deficits could disrupt comprehension of pictures if
pictorial information is normally translated into words. Although
such questions remain open, we emphasize that the representations
examined here are related to the underlying semantic properties of
our stimuli, for reasons explained in detail above. They encode
information that would have to be encoded, in some form, by any
semantic system capable of supporting genuine comprehension.

In evaluating the significance of the present results, we note
that the classification accuracies observed here are rather mod-
est. Thus, we are by no means claiming that it is now possible to
“read” people’s thoughts using patterns of activity in InSTC. Nor
are we claiming that the ImSTC is the unique locus of complex
thought. On the contrary, we suspect that the InSTC is merely
part of a distributed neural system responsible for accessing and
combining representations housed elsewhere in the cortex (10).
We regard the observed effects as significant, not because of
their size, but because they provide evidence for a distinctive
theory of high-level semantic representation. We find evidence
for a functional segregation, and corresponding spatial segrega-
tion, based on semantic role, which may enable the composition
of complex semantic representations. Such functional segrega-
tion need not take the form of spatial segregation, but insofar as
it does, it becomes possible to provide evidence for functional
segregation using fMRI, as done here.

A prominent alternative model for the encoding of complex
meanings holds that binding is signaled through the synchroni-
zation (or desynchronization) of the firing phases of neurons
encoding a complex representation’s constituent semantic ele-
ments (6-8). Given the limited temporal resolution of fMRI, the
current design cannot provide direct evidence for or against
temporal synchrony as a binding mechanism. However, the
present data suggest that such temporal correlations may be
unnecessary in this case, because these bindings may instead be
encoded through the instantiation of distributed patterns of ac-
tivity in spatially dissociable patches of cortex devoted to rep-
resenting distinct semantic variables. Nevertheless, it is possible
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that temporal synchrony plays a role in these processes. Another
alternative class of models posits the use of matrix operations to
combine spatially distributed representations into conjunctive
representations (e.g., “man as agent”) (4, 34). Although such
models do not necessarily predict the current results, they could
potentially be augmented to accommodate them, incorporating
separate banks of neurons that encode conjunctive representa-
tions for distinct semantic roles. This anatomical strategy, in which
separate banks of neurons represent different semantic role vari-
ables, is used and expanded in a recent computational model of
variable binding that mimics the capacities and limitations of hu-
man performance (10). This biologically plausible model employs
representations that function like the pointers used in some com-
puter programming languages. It is possible that the patterns of
activity within the agent and patient regions that we identify here
likewise serve as pointers to richer representations housed else-
where in cortex.

Although the present work concerns only one type of structured
semantic representation (simple agent-verb—patient combinations)
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and one mode of presentation (visually presented sentences), it
supports an intriguing possibility (5): that the explicit representa-
tion of abstract semantic variables in distinct neural circuits plays a
critical role in enabling human brains to compose complex ideas
out of simpler ones.

Materials and Methods

Data preprocessing and analysis were performed using the Searchmight
Toolbox (35) for Matlab, AFNI functions (36), and custom scripts. Further
methodological details are provided in Supporting Information. There, we
describe scan parameters, participants, stimuli, experimental procedure,
data analyses, and additional results. All participants gave informed consent
in accordance with the guidelines of the Committee on the Use of Human
Subjects at Harvard University.
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Experiment 1: Supporting Materials, Methods, and Results

Subjects. Eighteen self-reported right-handed subjects, 10 male,
from the Harvard University community participated in experiment
1 for payment (aged 19-34). All subjects were native English
speakers, had normal or corrected-to-normal vision, and gave
written informed consent in accordance with Harvard University’s
institutional review board. Data from two subjects were not ana-
lyzed due to failure to properly complete the experiment. No
subjects exhibited excessive head motion. Experiment 1 analyses
used the remaining 16 subjects.

Stimuli and Experimental Procedure. The sentences used in experi-
ment 1 are listed in Table S1. All sentences contained transitive
verbs, and described contact events (e.g., hit) involving two entities.
Four of the mirror image proposition pairs described situations low
in negative emotional valence and moral wrongness, as rated by an
independent group of subjects (n = 33) recruited through Amazon
Mechanical Turk (https:/www.mturk.com/). Two of these four
pairs involved inanimate entities (e.g., “the truck hit the ball”/“the
ball hit the truck”), and two involved animate entities (e.g., “the girl
touched the grandmother”/“the grandmother touched the girl”).
Both animate and inanimate entities were included to better
localize regions encoding domain-general structure-dependent
meaning. Information regarding the frequency of occurrence of the
used sentences is provided in Stimulus Frequency and ImSTC be-
low. The second set of mirror image proposition pairs were judged
to be asymmetrically emotionally evocative and asymmetrically
morally wrong, depending on which entity was described as per-
forming the action. (e.g., “the grandfather kicked the baby” worse
than “the baby kicked the grandfather”) (P < 0.01, for all analyses).
For these two items, one proposition was therefore expected to
produce a downstream affective response that its mirror image
would not produce, either in kind or magnitude, and hence were
used in our pattern-based effective connectivity (PBEC) analysis.

We used a slow event-related design in which sentences were
presented visually for 2.5 s, followed by 7.5 s of fixation. Pseu-
dorandom stimulus presentation lists were generated according to
the following constraints: Each proposition was presented twice
within each run, and neither the same proposition, nor a prop-
osition and its mirror image could be presented successively, to
avoid any overlap of the hemodynamic response for the to-be-
discriminated items. The experimental session consisted of 13
scan runs, resulting in 26 presentations of a given proposition over
the course of the experiment. For one participant, only 9 of the 13
runs were available for analysis due to technical problems.

Whether the proposition was presented in the active or passive
voice on a given trial was randomly determined. Active and passive
versions of the same proposition were treated identically for all
analyses. Three strings of nonwords were also presented to subjects
in each run, but were not analyzed. On one-third of the trials,
questions were presented following the fixation period. These
consisted of questions about the agent of the immediately preceding
proposition (e.g., “Did the ball hit something?”), questions about
the patient (“Did the ball get hit by something?”), or prompts to
rate “how morally bad” the event was on a scale of 1-5, with one
being “not bad at all” and 5 being “very bad.” Fifty percent of the
comprehension questions had affirmative answers. The subjects’
responses were signaled using a right-hand button box. Which
question was presented on a given trial was randomly determined,
as were the particular trials that were followed by comprehension
questions. These were included simply to promote subject en-
gagement and were not analyzed.
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Experiment 1: Classification Analyses

Whole-Brain Searchlight Mapping. We used a whole-brain search-
light procedure (26) to determine whether any brain regions
reliably contained information about the meaning of the pre-
sented sentences across subjects. Following the approach of
Mitchell et al. (24), we averaged over the temporal interval from
2.5 to 10 s following stimulus onset to create a single image for
each trial. The two presentations of each proposition for a given
run were then averaged to create a single image per proposition,
per run. All experiment 1 analyses were performed on these
averaged images.

We conducted our searchlight analyses using the Searchmight
Toolbox (35). A cube with a 2-voxel (6-mm) radius was centered
at each voxel, and a linear discriminant classifier with a shrinkage
estimate of the shared population covariance matrix was used to
probe the surrounding region for informational content. Nonedge
neighborhoods contained 124 voxels. Pairwise classifiers were
separately trained for each of the four mirror image proposition
pairs. For every pair, performance at a given location was assessed
by iteratively holding out each run as test data, training the
pairwise classifier on 12 of 13 runs, testing on the held-out run,
and averaging performance across the 13 cross-validation folds.
This resulted in a single whole-brain accuracy map per mirror
image proposition pair. These four pair-level maps were then
averaged to create one map across pairs for each subject, with the
aim of identifying regions that consistently contained information
across the four mirror image pairs.

These maps were then spatially normalized to Talairach space
for group-level statistical analyses. Given that all comparisons
were pairwise, we assume a mean of 0.5 for the null distribution,
and test the directional hypothesis that a given region contains
information across subjects by performing a one-tailed ¢ test
against 0.5 on the set of accuracy maps. Control of the whole-
brain familywise error rate was obtained through a combination
of voxelwise thresholding and cluster extent. These corrected P
values were obtained through Monte Carlo simulations in AFNI
(36). Such simulations empirically estimate the probability of
obtaining clusters of statistically significant values, given that the
data contain only noise. To estimate the smoothness of the noise,
we conducted an analysis that randomly permuted the sentence
labels for each subject and mimicked the individual and group
procedures above to obtain a group “noise-only” map. We thus
used the actual data with the same analytic operations to es-
timate the smoothness of the noise. The resulting spatial
smoothness of this noise-only map was found to be X = 6.2,
Y = 6.34, and Z = 6.3 mm. These dimensions were thus used in
the Monte Carlo simulations to estimate the probability of ob-
taining significant clusters across the whole-brain volume, given
only noise.

We first chose a voxelwise threshold of P < 0.005 and a corrected
threshold of P < 0.05, but no statistically significant clusters sur-
vived this threshold. Given that our chief aim was simply to localize
candidate regions for our connectivity analysis and for analysis in
experiment 2, we performed the same analysis at three lower vox-
elwise thresholds: P < 0.01, P < 0.02, and P < 0.05. At a threshold
of P < 0.02, two regions of interest (ROISs) were found to be highly
statistically significant [left mid-superior temporal cortex (ImSTC),
123 voxels, clusterwise P < 0.0001: right extreme capsule/insula, 108
voxels, P < 0.001 clusterwise]. These effects easily survive Bonfer-
roni correction for the use of four voxelwise thresholds. Thus, al-
though the observed voxelwise effects are relatively small, requiring
a liberal voxelwise threshold for detection, they yield a clusterwise
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effect in ImSTC that is highly robust. The large extent of this ROI
makes it unlikely that it consists of a single functional unit, however.
With this in mind, experiment 2 probes the informational content
of one of these two regions.

The first discovered ROI was located in the ImSTC. It begins in
the inferiormost part of the parietal cortex, extends through the
midportion of the superior temporal gyrus and superior temporal
sulcus and terminates in the middle temporal gyrus (Fig. S1). The
second ROI is centered on the right posterior insula/extreme
capsule fiber bundle. It encompasses parts of the posterior in-
sula, claustrum, putamen, and medial-superior temporal lobe
(P < 0.001, 108 voxels) (Fig. S1).

Post Hoc ROI Analyses. As our principal searchlight results from
experiment 1 were obtained by averaging classification accuracy
across four pairs, it is possible that the significance of the results
owes to high accuracy on some subset of the pairs, with chance
performance on the remaining pairs. To evaluate this possibility,
we trained and tested linear discriminant classifiers with a
shrinkage estimate of the covariance matrix separately on each
pair in ImSTC to evaluate post hoc which mirror image propo-
sition pairs were driving our results. Table S2 shows the results of
these classifications by mirror image proposition pair and ROL
A repeated-measures ANOVA revealed no significant differ-
ences in classification accuracy across the six pairs for either
ImSTC [F s 75y = 0.4, P = 0.84] or the right insula/extreme cap-
sule ROI [F(575 = 0.15, P = 0.98]. We find fairly consistent
levels of classification accuracy in both ROIs, suggesting these
regions are not driven by idiosyncrasies of the particular pairs, or
only by the animate or inanimate proposition pairs. Instead, the
pattern of results is consistent with both ImSTC and the right
posterior insula/extreme capsule encoding domain-general in-
formation about “who did what to whom.”

If the regions discovered in the searchlight analysis do repre-
sent structure-dependent meaning, then they should facilitate
classification of nonmirrored propositions as well. For example,
they should be able to distinguish “the truck hit the ball” from
“the father pulled the child.” Although these nonmirrored pairs
are not well matched, and one would expect many other brain
regions to be able to perform this classification (e.g., regions that
encode the semantic/phonological content of the nouns and
verbs), this analysis nevertheless serves as a “sanity check” on the
ROIs localized using the searchlight analysis. To ensure that our
ROIs could also discriminate nonmirrored pairs, pairwise clas-
sifiers were separately used for the 24 nonmirrored comparisons
that could be generated from the four mirror image proposition
pairs. This analysis was performed using data from the ImSTC
ROI and the right posterior insula/extreme capsule ROI sepa-
rately. These 24 classification accuracy statistics were then av-
eraged for each ROI and submitted to a one-tailed ¢ test against
0.5. Of the two ROIs able to discriminate within mirror image
proposition pairs, only the ImSTC ROI was able to reliably
discriminate nonreversed pairings as well [¢(15) = 4.06, P = 0.005].
The right extreme capsule/insula ROI trended in this direction,
but its results were not statistically significant [¢;5y = 1.45, P <
0.09]. This failure to robustly classify non-mirror image propo-
sition pairs casts doubt on the possibility that the right posterior
insula encodes complex, structured semantic representations.
Taken in conjunction with other null results pertaining to this
ROI, described in PBEC Analyses below, we chose to focus on
ImSTC in experiment 2.

Stimulus Frequency and ImSTC. The sentences used were chosen
partly because of their relative infrequency in English, ensuring
that subjects would not recognize the sentences as familiar units,
and would not have strong expectations about which entity is most
likely to be assigned to which role. (We did not use the familiar
sentences “Dog bites man” and “Man bites dog” in our experi-
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ments for these reasons.) See refs. 14, 15, and 37 for literature on
such violation of expectations, and the resulting N400 response
in electrophysiology. For the used sentences, no active-voice
construction was present in the Google 5-gram text corpus
(https://catalog.ldc.upenn.edu) or the Google Books ngram corpus
(https://books.google.com/ngrams) as of August 2011. This strongly
suggests that frequency differences within pairs were not responsible
for the observed classification performance. Moreover, as both
propositions within a pair were composed of the same words, the
pairwise summed word frequency was necessarily identical.

It remains possible, however, that the frequency of various higher-
order parts of the sentences could differ, even if the entire sentences
that contain these parts are matched. For example, the construction
“the father pulled” may be more frequent than the construction “the
child pulled,” which could facilitate pairwise discrimination of “the
father pulled the child” and “the child pulled the father.” If fre-
quency statistics were driving differences in the observed patterns of
activity, then we would expect the region to carry information about
these statistics across propositions. To address this possibility, we
attempted to predict various frequency statistics of the sentences
from ImSTC’s patterns of activity.

We trained separate regression models to predict various fre-
quency statistics pulled from the Google Ngram corpus (https://
catalog.ldc.upenn.edu) and simple Google web search (www.google.
com). These statistics included the frequency of the agent/verb
combinations in the active voice (e.g., “the father pulled” and
“father pulled”), verb/patient combinations (e.g., “pulled the
child), and the mean, minimum, and maximum of these statistics
for a given proposition. Each proposition was first described by a
log transformation of the relevant frequency statistic, and a
support vector regression (SVR) model was trained to predict
the continuous value of that statistic from the pattern of activity
in ImSTC.

To evaluate the models, we trained the SVR model on N — 2
trials and attempted to predict the frequencies of two held-out
observations. The absolute value of the difference between the
target frequencies and those predicted by the SVR model was
compared for both the correct mapping and the incorrect map-
ping. If the sum of the two correct mappings had a lower abso-
lute difference than the sum of the two incorrect mappings, the
model was determined to have been correct. This procedure was
repeated using different frequency metrics, and the results are
shown in Fig. S2. We consistently found no information about
any frequency statistics to be available in InSTC. Although these
results may appear to be below a priori chance levels of 50%),
they are within the range that we discover randomly permuting
the labels and running the analysis 1,000 times for each subject.
The mean accuracy using randomly permuted data are 49.6%,
with 90% of the mean accuracies falling between 45.4% and
53.5%. Across frequency statistics, we find a mean accuracy of
47.5%, which falls within the expected range. We also note that our
frequency measures are correlated, making it less surprising that
multiple frequency measures lead to below-chance performance,
given that any do. It is therefore unlikely that our results owe to
systematic frequency differences between pairs: Rather, they ap-
pear to reflect the structured, semantic content of sentences.

PBEC Analyses

Background and Motivation. The identification of representational
content in the human brain has benefited from the development
of multivoxel pattern analysis (MVPA) (23-26). Rather than
asking whether the magnitude of the blood oxygen level-
dependent (BOLD) response in a single voxel or brain region is
predicted by the presence or absence of a psychological opera-
tion, researchers now routinely pool information across sets of
voxels to ask whether and where distributed patterns of activity
track variation in psychological content. MVPA has been pro-
ductively applied to domains lacking the differential engagement
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of psychological processes expected to generate uniformly greater
neural activity over a brain region (when sampled at the spatial
resolution available to contemporary neuroimaging), but in which
some representational content nevertheless varies over time. Al-
though this ability makes MVPA particularly well suited to our
current aims, its increased power is not completely without cost, as
its heightened detection sensitivity makes it more susceptible to
subtle confounds. It is therefore particularly important to establish
that information detected by the pattern classifier actually reflects
the psychological processes or representations of interest.

To address this potential concern, we used the following rea-
soning: If the patterns identified reflect neural representations of
psychological content, then one would expect the pattern in-
stantiated on a given trial to modulate downstream responses that
depend on that content. Given that this logic is broadly consistent
with the logic underlying traditional effective connectivity analyses
(38), we call the present analysis a PBEC analysis. As with con-
ventional effective connectivity analyses, the aim is to establish the
functional influence of one neuronal population on another.

Several groups have recently integrated MVPA and functional
connectivity analyses, devising ways to determine whether various
neural structures share similar representational profiles (39), and
whether patterns in one region correlate with univariate re-
sponses (40) and patterns (41) elsewhere in the brain. The present
analysis extends this integration of MVPA and connectivity
analyses to model cases in which the patterns of activity in one
region are thought to drive the functional state of another using
mediation analyses (27). Such tests are widely used in the social
sciences (27) and have been previously applied to fMRI data (42).
Tests for mediation assess whether the effect of a predictor
variable on an outcome variable is either partly or wholly carried
by an intervening, or mediating, variable.

In the present context, if (i) the pattern of activity instantiated
across a region reflects the neural representations of interest,
and (ii) those representations are hypothesized to drive an in-
dependent response, then (iii) that pattern may mediate the
effect of the stimulus on this downstream response. Here, we
used mirror image propositions that differ in their affective sig-
nificance, such as “the grandfather kicked the baby” and “the baby
kicked the grandfather,” and sought to determine whether their
associated patterns, instantiated across ImSTC, mediate the re-
lationship between the sentences presented and the consequent
affective responses to these sentence’s meaning. Such a finding
would provide evidence that the identified patterns do indeed re-
flect neural representations of these sentences’ meaning.

To succeed, the mediating variable (here, the pattern of activity in
ImSTC) must explain unique variance in the downstream response
over and above variance in that response explained by the stimulus.
This is because, to the extent that there is variability or “error” in
this causal process, the more proximate mediating variable (here,
the pattern of neural activity) should explain unique variance in the
response, in virtue of being a channel through which the direct
effect (here, the effect of the proposition presented on the amyg-
dala’s activity level) is carried. The detailed procedure for quanti-
fying the pattern of activity in ImSTC and testing the mediation
hypothesis is specified below.

PBEC Procedure. For a binary classification problem, such as dis-
criminating patterns evoked by “the grandfather kicked the baby”
and “the baby kicked the grandfather,” the training procedure
establishes a hyperplane that divides the feature space (in this
case, a voxel-activity space) into two regions. Here, one region is
associated with the characteristic pattern of one proposition and
one with the characteristic pattern of the other (Fig. 1). Each
trial’s multivoxel BOLD response then lies at some distance and
direction from this classification hyperplane in one of the two
regions of the space.
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We used these trial-by-trial “signed distances” as measures of
the representational content of ImSTC on a given trial, as they
carry information both about the classifier’s decision (the sign,
corresponding to the side of the hyperplane and region of the
space) and, roughly, its “confidence” (the absolute value of the
distance). This effectively reduces the dimensionality of the re-
gion from the number of voxels in the ROI to one. Here, that
one variable summarizes the informational content of psycho-
logical interest contained by the entire region. In the current
coding scheme, good instances of the affectively salient propo-
sition (“the grandfather kicked the baby”) will have large positive
distances, good instances of the affectively neutral proposition
(“the baby kicked the grandfather”) will have large negative
distances, and ambiguous instances will have distances near zero.
We can then ask whether these distance variables predict re-
sponses elsewhere in the brain. These signed distance variables
were obtained and used as follows.

First, linear classification functions were learned separately for
the two mirror image proposition pairs using a leave-one-out
procedure.

The classification function for each novel test exemplar is then
given by the following:

gx) =w'x+wy,

where x is the vector of voxel intensities for the current test trial,
and 7 denotes vector transposition. The voxel-weight vector w for
each cross-validation iteration was obtained as follows:

w=2"Ym —my),

where my and m, are the vectors of class-specific mean voxel
intensities across ImSTC. m; is the affectively salient (“the
grandfather kicked the baby”) mean vector, and m, is the affec-
tively neutral (“the baby kicked the grandfather”) mean vector.
>~! was a shrinkage estimate of the population covariance matrix
shared between all stimulus classes (43).

The constant term was determined as follows:

1
wo=— E (ml(group) - m2(gmup))~

The weight vector w determines the direction through the feature
space, whereas the constant term determines the location of the
hyperplane relative to the origin.

Here, the m; and m, terms for each subject were the means of
the respective class along the projection for the remaining 15
subjects. We found these group-level mean estimates to yield
more reliable predictions in the connectivity analysis than using
an individual subject’s data [t(24y = 3.93, P = 0.001, vs. t(24) =
1.28, P = 0.22]. These results survive correction for multiple
comparisons for these two ways of obtaining wy.

Finally, the signed distance of an observation from the hy-
perplane was computed as in ref. 44:

where |w|| is the Euclidean norm of the weight vector, repre-
senting the distance from the origin to w.

This distance provides a trial-by-trial measure of the repre-
sentational content of ImSTC, which can be used as a predictor
variable in subsequent connectivity analyses. In the present case,
given that the affectively significant propositions occupied the
positive region of the space, and the affectively neutral regions
occupied the negative region of the space, we predict a positive
statistical relationship between trial-by-trial signed distance in
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ImSTC and the magnitude of the mean signal level across the left
amygdala ROI (Fig. 1).

We expect the magnitude of the distance variable to explain
unique variance over and above the sign of the distance variable
because the probability that the classifier is correct should in-
crease with an increase in distance. This assumption was borne
out empirically. Across all pairs, the absolute value of distance
from the hyperplane predicts classifier performance (P < 0.001).
For example, those trials in which the classifier is relatively
confident that the content of the stimulus is “the grandfather
kicked the baby” relative to “the baby kicked the grandfather,”
are in fact more likely to be correct (and vice versa).

We did not, however, expect to find a perfectly linear re-
lationship between the signed distance from the classification
boundary and the amygdala response for a number of reasons:
First, we do not expect meaningful variation in the prediction of
the amygdala response as a function of distance on the “the baby
kicked the grandfather” side of the hyperplane. We see no rea-
son that “good” instances of the affectively neutral class should
be less likely to elicit an amygdala response than bad instances of
that class, as a linear model would predict. Furthermore, al-
though we would expect good instances of the affectively salient
proposition to be more likely to elicit an amygdala response than
affectively neutral trials, or trials about which the classifier is
uncertain, it is not obvious that this relationship should continue
indefinitely in a linear manner, without saturation. We therefore
sought a way to incorporate the continuous information provided
by an observation’s distance from the classification boundary,
without confining ourselves to a simple linear predictive model.
We thus chose transform the signed distance from the hyper-
plane with a sigmoidal function, which (conceptually) applies
both a threshold (a point below which we would not expect an
amygdala response) and a point of saturation (a point above
which we not expect increasing distance to predict an increased
likelihood of amygdala response).

The precise shape of the sigmoid is controlled by two free
parameters: one affecting the center of the function (p2 below),
and the other (p1) affecting its slope:

1
S lretvd

Given that we did not have a priori quantitative predictions for
the precise shape of the function, we allowed the value of the
two parameters to be determined empirically through cross-val-
idation. For each subject, the 2D parameter space (center X
slope) was searched with that subject’s data removed. Coefficients
for the regression of amygdala activity on the transformed ImSTC
signed distance variable were obtained for each combination of
the center and slope parameters. The parameter combination
yielding the best prediction, defined as the greatest mean  value,
on the remaining subjects was then used for the held-out subject.
The parameter combination selected was stable across cross-
validation iterations.

The heat map in Fig. S3 visualizes the average regression
performance for various sigmoids by averaging the search results
across 16 cross-validation iterations (one holding each subject
out). These search results provide information about the re-
lationship between the pattern in ImSTC and the amygdala’s
response. For simplicity, if we conceptualize the amygdala re-
sponse as a binary variable, the center parameter of the sigmoid
defines the point at which the probability of a response is equally
likely to the probability of a nonresponse. We see from the heat
map in Fig. S3 that the optimal center of the sigmoid is shifted to
the right of the classification boundary, in the positive region of
the space. The observed positive shift of the center parameter
relative to the hyperplane is explicable under the assumption

Frankland and Greene www.pnas.org/cgi/content/short/1421236112

that the probability of the amygdala’s not responding given that
the stimulus is “the grandfather kicked the baby,” is greater than
the probability of the amygdala’s responding given that the
stimulus was “the baby kicked the grandfather.” This assumption is
reasonable given that each proposition is encountered repeatedly
over the course of the experiment, potentially attenuating the
subject’s affective responses over repeated presentations. This
would make failures to respond to the affectively salient prop-
osition more likely than “false positives” of the amygdala to the
affectively neutral proposition, leading to a positive shift of the
optimal center (as the point of equiprobability) for the sigmoid
relative to the classification hyperplane. This method may hold
more general promise for testing different quantitative models of
the functional dependence between brain regions.

Finally, we asked whether the signed distance of an observation
from the classification hyperplane in ImSTC mediates the re-
lationship between the stimulus and the mean level of activity in
the amygdala. To satisfy conventional criteria for mediation, it is
necessary that the pattern of activity in InSTC explain variance in
the amygdala’s response over and above the variance explained
by the identity of the stimulus presented (here, which proposi-
tion the subject read). We therefore included a binary regressor
coding the content of the presented proposition as a covariate of
no interest. We also included a regressor for the mean signal
level across the entire ImSTC ROI as a second covariate of no
interest, to preclude the possibility that any observed mediation
was due solely to aggregate functional coupling between the
regions. We obtained standardized coefficients for the regression
of amygdala signal on signed distance separately for all subjects,
and we used a one-sample ¢ test to evaluate whether this co-
efficient was reliably nonzero across subjects. Finally, we used
the classical Sobel test (27), as well as Monte Carlo simulation
(29, 30), to assess the significance of the indirect effect a*b on
the dependent variable.

The Sobel statistic is computed as follows:

ab
[ 212+ 2,2 4 22
52b% +5,0% + 5357,

In the present experiment, a is the ordinary least-squares regres-
sion coefficient of distance from the hyperplane on the category
label, and b is the regression of mean left amygdala on this
distance, controlling for the category label of the stimulus, and
the mean signal level across the ROI. The s terms in the de-
nominator are the SEs for the a and b coefficients, respectively.

As reported in the main text, we found this indirect effect to be
statistically significant (z = 2.47, P = 0.013) using the Sobel test.
Given that the Sobel test is unreliable for small sample sizes (29),
we also used Monte Carlo simulation to estimate confidence
intervals for the indirect effect. This procedure yielded results
comparable to the Sobel test (P < 0.01 for the indirect effect).
The above analyses were repeated with the right posterior insula/
extreme capsule ROI as the mediator. In contrast to ImSTC, all
assessments of the pattern of activity in the right insula ROI as
the mediating variable were nonsignificant (P > 0.15).

What is the source of the trial-by-trial variability driving these
results? One possibility is that subjects are habituating to the
sentences over the course of the experiment, resulting in a sys-
tematic decrease in the distance from the hyperplane over time. We
find a nonsignificant negative relationship between trial number and
absolute distance from the hyerplane (r = —0.05) for the two mirror
image proposition pairs used in the PBEC analysis. Although very
small, this effect trends toward significance when the correlation
coefficients are estimated separately for each subject, and then
pooled across subjects [t14) = 1.85, P = 0.08]. We see similar trends
when we bin the data by run, rather than maintaining the temporal
ordering of each trial [mean r = —0.16, #14) = 1.79, P = 0.095]. The

zZ=
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data therefore show some weak signs of habituation; however,
from these analyses, we find no strong evidence that distance from
the hyperplane is decreasing systematically over time. It therefore
seems as though there are additional sources of trial-by-trial vari-
ability. These may be transient fluctuations in participant attention
from trial to trial. Or they may be more systematic sources of
variability, such as that introduced in passive sentences: Passive
sentences require additional syntactic operations to recover who
did what to whom. This additional computation may introduce
variability in the semantic representation in ImSTC and therein
also attenuate affective responses.

Whatever the source, we find evidence that the relationship
between ImSTC and the amygdala is specific and systematic; when
the pattern corresponding to “the grandfather kicks the baby”
rather than “the baby kicked the grandfather” is instantiated, we
see an increased amygdala response controlling for the factors
detailed above.

Although we believe the emotional response is best reflected by
the mean response amplitude of the entire left amygdala ROI, we
also asked whether the pattern in ImSTC significantly predicts the
pattern in the amygdala. To evaluate this possibility, we trained a
pattern classifier to differentiate emotionally salient mirror image
proposition pairs and used this classifier’s distance from the
hyperplane as the outcome instead of the mean amygdala re-
sponse. We found a significant correlation between distance
from the hyperplane in ImSTC and distance from the hyperplane
in the amygdala, when trained to classify the stimuli, controlling
for the stimulus, and the mean level of activity in ImSTC [£(;5) =
2.41, P = 0.028]. As with the mean amplitude, the pattern in the
amygdala does not predict the pattern in ImSTC [¢45) = 1.1, P =
0.29], controlling for the stimulus. Using the pattern in the
amygdala, rather than the mean signal, as the dependent mea-
sure, we find a trending, but nonsignificant mediation effect (z =
1.88, P = 0.06). These results are therefore also consistent with
the proposed causal model, although the effects are smaller than
when using the mean regional response in the amygdala as the
dependent variable.

Experiment 2: Supporting Information

Subjects. Thirty-four self-reported right-handed members of the
Harvard community participated for payment (aged 18-35). We
used the same subject inclusion criteria as in experiment 1. One
subject’s data were not analyzed to due to failure to properly
complete the experiment. Six subjects’ data were excluded before
analysis due to answering less than 75% of the comprehension
questions correctly. Two subjects were excluded for exhibiting
excessive head motion, defined as greater than 3 SDs above the
mean. Data from the remaining 25 subjects were included in all
experiment 2 analyses.

Stimuli and Experimental Procedure. The sentences for experiment 2
were generated using four nouns (“man,” “girl,” “dog,” and “cat”)
and five transitive verbs (“chased,” “scratched,” “blocked,” “ap-
proached,” and “bumped”) to create every possible agent—verb—
patient combination, with the exception of combinations using the
same noun twice (e.g., “the dog chased the dog”) yielding 60 (4 x 5 X
3) unique propositions. These particular verbs were chosen because
they permit plausible agent-verb—patient combinations using the
above nouns, and are comparable in their frequency of occurrence.

Experiment 2 consisted of six scan runs. Each proposition was
presented once per run, and six times in total. Whether a
proposition was presented in the active or passive voice on a given
trial was randomly determined. As in experiment 1, sentences
were visually presented for 2.5 s followed by 7.5 s of fixation. A
comprehension question was presented following the fixation
period on one-third of the trials. These questions were of the form
“Did the dog chase something?” or “Was the dog chased by
something?” and 50% had affirmative answers.
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General Searchlight Procedure. All searchlight analyses for exper-
iment 2 were confined to the ImSTC. The searched area was
formed by dilating the group-level ImnSTC ROI discovered in
experiment 1 6 mm so as to encompass all of the mid and posterior
regions of the left superior temporal gyrus, superior temporal
sulcus, and middle temporal gyrus. The resulting ROI contained
6,882 1.5-mm> voxels, (center, —54, 23, 3). Fig. 2B shows the
extent of the searched region for experiment 2. This mask was
warped from Talairach space to each subject’s native space, and
all classification analyses were conducted in the subject’s native
space. As in experiment 1, all searchlight analyses were im-
plemented in the Searchmight Toolbox (35) and used a linear
classifier with a shrinkage estimate of the covariance matrix.
Local voxel-neighborhoods were defined using a 3-mm (two-
voxel) radius within the ImSTC mask, entailing that nonedge
neighborhoods again contained 124 voxels.

Agent and Patient Decoding Procedure. For our principal analyses,
we searched ImSTC for patterns of activity encoding information
about the identity of the agent and patient that generalizes across
verbs. Agent and patient classifications were performed using
separate classifiers, iteratively using data from local voxel-
neighborhoods to make four-way decisions regarding the noun
occupying the agent or patient role on a given trial (man? girl?
dog? cat?). As in experiment 1, active and passive versions of the
same proposition were considered identical for the purposes of
these analyses. To train and test the classifier, we used a fivefold
cross-validation procedure defined over the five verbs (“chased,”
“scratched,” “blocked,” “approached,” “bumped”). For a given
iteration, all data generated by one of the five verbs was re-
moved, and classifiers were trained to identify the noun occu-
pying the agent or patient role on that trial, using the data from
the remaining four verbs. The classifiers were then tested using
the patterns generated by the held-out verb.

Classification accuracies for each subject were averaged across
cross-validation folds, and the mean accuracy was assigned to the
center voxel of the search volume. These individual-level accuracy
maps were then smoothed with a 3-mm FWHM kernel, warped to
Talairach space, and the group of subjects’ maps was submitted to
a directional one-sample ¢ test against 0.25 to determine whether
any regions reliably encoded information about the identity of
the agent or patient across subjects. We used Monte Carlo
simulation to determine the probability of obtaining significant
clusters given that the data contained only noise. We used a
voxelwise threshold of P < 0.005, and a corrected threshold of
P < 0.05 to identify regions exhibiting statistically significant
effects. As in experiment 1, we estimated the smoothness of the
data by conducting the same classification and aggregation
procedures with randomly permuted labels. The obtained
smoothness parameters for each analysis, as well as information
about the voxel clusters found to be significant by the Monte
Carlo simulation, are presented in Table S3.

Verb Decoding Procedure. We performed an additional searchlight
analysis probing ImSTC for subregions that contained in-
formation about the trial-by-trial identity of the sentence’s verb.
This task required a five-way decision regarding the identity
of the verb (“chased,” “scratched,” “blocked,” “approached,”
“bumped”). Here, the cross-validation folds were defined over the
six scanning runs. The classifiers were trained using data from five
of six runs, and were then asked to identify the verb present for
trials from the remaining run. The verb classifiers were thus only
required to generalize to new tokens of previously encountered
combinations, rather than wholly new combinations. Individual
accuracy maps were averaged as in prior analyses, smoothed with a
3-mm FWHM kernel, warped to Talairach space, and submitted to
a one-tailed ¢ test against 0.2, as chance performance for the five-
way verb classification was 20%. Corrected P values were obtained
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in the same manner as in the above searchlight analyses. Results
are visualized in Fig. S4, and more information is provided about
the analysis and results in Table S3.

Post Hoc ROI Analyses.

Representational specificity of subregions. For all post hoc analyses,
we used a leave-one-subject-out cross-validation procedure to
localize regions of interest without biasing the analyses. Specif-
ically, we iteratively conducted group-level ¢ tests on the search
maps for 24 of 25 subjects to identify clusters of informative
voxels with each subject’s data removed. All such regions were
localized using a voxelwise threshold of P < 0.005 and a mini-
mum cluster size of 50 mm?, unless otherwise specified. These
voxel clusters defined the exact ROI for the held-out subject for
the post hoc test of interest. For any post hoc analysis, the exact
ROI queried could thus vary slightly from subject to subject.

We first assessed the representational specificity of the agent
and patient subregions identified by the searchlight analysis, as
described in the main text. After localizing clusters using the leave-
one-subject-out cross-validation method described above, we av-
eraged the held-out subject’s agent and patient search results across
the voxels contained by the subregions. This produced one average
accuracy statistic for each of the agent and patient identification
problems, in each of the three subregions (two agent, one patient),
for each subject. We performed repeated-measures ANOVAs
to test for a subregion by content interaction for the anterior
agent and patient regions, and paired ¢ tests to test for simple
effects of identification accuracy within each of these three ROIs.
Results of these analyses are reported and plotted in the main text
(Fig. 3). The average classification accuracies for the voxels
comprising these ROIS were small, but reliably above chance.

In addition to assessing significance using the analytic P values
of the F and T distributions, we also performed permutation
analyses. To do so, we randomly scrambled the labels of the
classification accuracies (agent/patient), holding the subject and
region constant. For each subject, this analysis randomly assigns
“agent” classification accuracies to either the “agent” or “pa-
tient” region, and with different randomizations across subjects,
and likewise for patient classification accuracies. This particular
permutation approach has a number of desirable properties:
First, it preserves the within-subject structure of the data; ac-
curacies obtained from a given participant are shuffled within
that participant. Second, it preserves the across-subjects struc-
ture of the data, because the regions used for the permutation
analysis were identified using N — 1 subjects’ data, just as in the
original analysis. We performed this procedure 100,000 times to
generate an empirical null distribution. The empirically observed
probabilities very closely correspond to those derived analytically
from the F and T distributions in all cases but one: Classification of
the agent in the anterior agent ROI (as defined using independent
subjects) is statistically significant when assessed using the analytic ¢
distribution (P = 0.02), but only marginally significant when using
the permutation test (P = 0.055). (However, see a significant
replication of this finding in experiment 3 below.)

Next, because we failed to find a significant difference between
agent identification accuracy and patient identification accuracy
within the agent subregions, we asked whether these regions
might simply be encoding information about the semantic content
of the nouns without respect to semantic role. To evaluate this
possibility, we performed two additional searchlight analysis
within ImSTC. In the first, classifiers were trained to determine
whether a given noun was present in the sentence, regardless of
whether it was the agent or patient. For example, “The dog
chased the man” and “The cat scratched the dog” were coded
identically, given that they both contain an occurrence of “dog.”
The classifier’s task was to determine whether or not “dog” was
present in the sentence. This procedure was repeated for each of
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the four nouns, and the results were averaged to obtain one
classification accuracy statistic for each voxel neighborhood.

To directly compare such “role-neutral” identification func-
tions to the “role-based” identification functions we have
reported thus far, we performed a searchlight analysis in which
classifiers made pairwise, role-based decisions (“man” as agent
vs. “cat” as agent). It was necessary to perform this pairwise role-
based classification analysis given that chance levels of perfor-
mance differed between role-neutral and our primary role-based
classification functions: Chance performance for “role-neutral”
classifiers was 50%, whereas chance performance for “role-
based” classifiers was 25%. However, because each word appears
in both agent and patient roles, these role-neutral classification
functions naturally have twice as much data available to train and
test the classifier. To equate the amount of the data, we randomly
sampled 50% of each subject’s data for use in the role-neutral
classification task to equate the amount of data used in training.
We again localized the agent and patient regions using the leave-
one-subject-out method described above, and averaged the “role-
neutral” and “role-based” classification accuracies for each region.

In general, these results support our inference that these
subregions are encoding role-specific information, rather than
role-neutral semantic information. None of these regions are able
to reliably identify the noun present, without respect to the role it
occupies [anterior agent: 4y = 0.50, P = 0.31; posterior agent:
teay = 0.24, P = 0.40; patient: #54y = —0.22, P = 0.41].

The anterior and posterior agent regions trend toward being
significantly better at identifying the agent than simply identifying
the noun collapsing across roles [anterior: ¢(24) = 1.72, P = 0.097;
posterior: ¢4y = 1.76, P = 0.09]. Although the latter results are
not statistically significant using a two-tailed test, we note that
this is an exceptionally strong test. This is because a given noun,
when present, will be present as the agent 50% of the time. The
hypothesis that the agent region merely registers the presence of
a given noun predicts that classification accuracy will be higher
for general noun classification than for agent classification, and
yet the pattern appears to be reversed. As expected, the patient
region is significantly better at identifying the patient than
identifying nouns in a role-neutral way [{(24) = 2.22, P = 0.036].
Medial-lateral agent/patient topography of anterior ImSTC. Fig. 3C vi-
sualizes the representational content of anterior InSTC moving
along the medial-lateral axis. In performing these analyses, it was
important to first localize the anterior ImSTC in a way that is
unbiased with respect to its role preferences. To do this, we
asked where in ImSTC a classifier could reliably tell, for a given
noun (e.g., “man”), whether that concept was the agent or pa-
tient across trials. We conducted four such analyses, one for each
noun, each time focusing only on trials in which the target noun
was either the agent or patient. This analysis jointly localizes the
set of subregions that encode the identity of the agent along with
those that encode the identity of the patient. Because, for a given
noun, being the agent is perfectly correlated with not being the
patient and vice versa (in this analysis, although not in the ex-
periment more broadly), both agent and patient regions should
be identified by this analysis. Critically, this analysis reveals
nothing about which type of information (agent/patient) is en-
coded in a particular subregion, making it a suitably unbiased
localizer for present purposes.

For each of the four nouns, we again used an across-verb cross-
validation procedure in which the classifier was trained on four of
five verb contexts, and tested on the fifth, forcing it to generalize
to data generated by new verb contexts. This was repeated for all
four nouns, and the results were averaged. Given our goal of
localizing a relatively large region, we used a liberal voxelwise
threshold of P < 0.05 and cluster size of 250 voxels, which re-
sulted in a significant cluster occupying a relatively large portion
of the anterior ImSTC.
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Within this ROI, we separately averaged the agent identifi-

cation performance and the patient identification performance.
We then computed the difference between the two performance
levels at each Talairach X coordinate (this ranged from X = —46:
—64), averaging over the anterior—posterior and superior—in-
ferior axes. In other words, we examined performance levels in a
series of slices, running along the medial-lateral axis. We then
performed separate group-level ¢ tests for agent identification
accuracy, patient identification accuracy (Fig. 3C), and the dif-
ference between the two (Fig. 3C) at each X coordinate. These
analyses show that medial regions of anterior ImSTC contain
information about the identity of the agent, but not the patient.
Lateral regions of anterior ImSTC contain information about the
identity of patient, but not the agent. This selectively is reflected
in the direct comparison of the two plotted in Fig. 3C.
“Deep"” structure vs. linear order in InSTC. To further confirm that the
ROIs discovered by the searchlight analysis are indeed encoding
the agent and patient of the propositions, we directly compared
the performance of classification functions grouping sentences by
their deep (agent/patient) structure to the performance of clas-
sifiers trained to group sentences by their linear order. When
classifying based on deep structure, “the dog chased the man”
and “the man was chased by the dog” were coded identically, as
in our standard analyses. When classifying based on linear order,
“the dog chased the man” and “the dog was chased by the man”
were coded identically, given that the linear order of the words,
and moreover the “surface subject” and “surface object” are the
same across the sentences.

Using the leave-one-subject-out localization procedure de-

scribed above, we found that classifiers trained to identify the
underlying agent and patient performed significantly better in
their respective subregions than classifiers trained to decode the
surface subject [agent > surface subject: #(24) = 3.27, P = 0.003]
and surface object [patient > surface object: t24) = 2.16, P =
0.046], respectively. In fact, a subsequent search of ImSTC re-
vealed no subregions that encoded information about the surface
subject and surface object, as such.
Generalization between active and passive forms. The foregoing
searchlight results demonstrate that there exist consistent pat-
terns of activity for active and passive versions of the same
proposition that classifiers can learn under supervision. We were
also interested in whether classifiers trained to decode the agent
or patient solely on one surface form can automatically generalize
to the alternate form. We focused on the anterior agent, posterior
agent, and patient ROIs identified by the across-verb searchlight
procedure, and trained classifiers to make the same four-way
decision (man? dog? cat? girl?) for each trial. In this case, the
classifiers were trained only on active sentences, and tested on
passive sentences, and then trained only on passive sentences and
tested on active sentences. The results of these two procedures
were then averaged and pooled across subjects.

We found that the neural representations in both the patient
ROI and the posterior agent ROI automatically generalize across
active and passive sentence forms [fo4) = 2.10, P = 0.023; one-
tailed: £(24y = 1.83, P = 0.039], but that the anterior agent ROI
patterns did not [to4) = 1.10, P = 0.14]. Although this difference
may signal a functional difference between the two agent ROIs,
it is important to note that this training procedure uses 50% of
the data used by the searchlight analyses (288 trials vs. 144 tri-
als), making it difficult to interpret this null result conclusively.
To further evaluate whether this null effect in generalizing across
active and passive voice for the agent region is due to limited power,
we reran the principal agent identification analysis, which subsumes
active and passive sentences under the same function, using a
random 50% of each subject’s data. This matches the amount of
data available when generalizing automatically across the active and
passive voice. We found that agent classification subsuming active/
passive is significantly better than agent classification when gener-
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alizing from active to passive (and vice versa), even when the
number of observations used to train the classifier are matched
[t(24) = 2.3, P = 0.03]. Although this effect is not large, it suggests
that the agent region’s failure to automatically generalize across
voices may reflect a real difference in the representation of the
agent when communicated through the active and passive voices.
That is, it suggests that these regions may not simply be sensitive
to “Who did it?” and “To whom was it done?” but also to the
way in which the value of these variables is derived from the
sentence’s syntax.

Syntactically, the patient is the verb’s internal argument (that

is, internal to the verb phrase) for both active and passive sen-
tences. Accordingly, we find that representations of the patient
generalize automatically across voices. However, the agent is an
external argument when expressed in the active voice, but part of
the nonmandatory “by” phrase (e.g., “was chased by the dog”)
when expressed in the passive voice. Thus, although the patient
is an argument in both voices, the syntactic status of the agent
differs across voices. This different mapping from syntax to se-
mantic role may influence the classifier’s ability to automatically
generalize across voices for the agent region, even if the region
can learn a function that groups the agent in active and passive
sentences together, as we see in our principal analysis. Whether
these regions carry information about the structure of the sen-
tence is an important topic for future research.
Classification performance by verb context and noun. The foregoing
searchlight analyses averaged classification performance across
the four nouns to-be-identified and generalization ability to
patterns generated by the five verb contexts. It thus remains
possible that the results owe to particularly strong performance on
a subset of nouns and/or verb contexts, with no information about
the others. Whether the results are driven by a subset of nouns
and verb contexts is of considerable interest to the interpretation
of the results: Do these regions house domain-general mecha-
nisms for encoding structured semantic content, used across
nouns and verb contexts? Or do the regions specialize in par-
ticular semantic content, either in the semantic content of the
nouns they represent or the verb contexts in which they appear?
We were therefore interested in whether the classifiers performed
consistently when separately analyzed for each noun and each
verb context.

To determine whether the neural representations generalize to
all verbs used, we performed a searchlight analysis in which local
classifiers were (i) trained to make the same four-way agent/
patient identification decisions described above using data gen-
erated by the target verb (20% of the data) and asked to gen-
eralize to the remaining four verbs (80% of the data), and (ii)
trained using the remaining four verbs (80% of the data) and
asked to generalize to the target verb (20% of the data). The
results of i and ii were then averaged to provide a measure of
how well the patterns of activity corresponding to noun/role
combinations in that verb context generalize to the other four
verb contexts. This analysis produced five separate search maps
of ImSTC for agent/patient identification in generalizing to each
of the five verbs. We iteratively localized clusters containing
information for four of five verbs using these search maps and a
liberal threshold (P < 0.05 voxelwise, 50 mm® ) and asked
whether the average classification accuracy in generalizing to the
fifth verb in the identified region was significantly greater than
chance. Table S4 shows the results of these analyses for the three
ROlIs, by generalization to each verb.

We then performed a similar analysis examining classification
performance, broken down by the nouns occupying these roles.
Here, we performed separate searchlight analyses for each of the six
possible pairwise noun discriminations (e.g., discriminating “man as
agent” vs. “girl as agent”), for both the agent and patient roles. The
ROIs were again iteratively localized using the results of five of six
pairwise classifications and a liberal threshold (P < 0.05 voxelwise,
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50 mm3), and the searchlight results of sixth pair were averaged
across the resulting ROI. The results are presented for each
pairwise comparison in Table S4.

Experiment 3: Replication of Experiment 2

Experiment 3 was conducted using the same facilities, equipment,
and parameters as experiments 1 and 2 with changes identified below.

Data Acquisition, Subjects, and Preprocessing. Each functional echo-
planar imaging volume consisted of 58 slices parallel to the an-
terior commissure (field of view, 192 mm; repetition time, 3,500
ms; echo time, 28 ms; flip angle, 90°). We used parallel imaging
(iPAT 2) to obtain whole-brain coverage with 2 x 2 X 2-mm
voxels. We analyzed data from 41 participants aged 18-35. The
data were not smoothed before classification analyses.

Stimuli and Experimental Procedure. As in experiment 2, sentences
were constructed from a menu of nouns and verbs to form every
possible aRb proposition with two distinct nouns. We used six
monosyllabic English nouns that refer to animals: “moose,” “cow,”
“hog,” “crow,” “goose,” and “hawk.” We used eight transitive
verbs: “chased,” “approached,” “passed,” “attacked,” “surprised,”
“frightened,” “noticed,” and “detected.” For both motion verbs
(e.g., “chased” and “attacked”) and psychological verbs (e.g.,
“surprised” and “noticed”), we classified the entity that caused
the event as the agent and the other entity as the patient. That is,
we treated the active-voice objects of “surprised” and “fright-
ened” and the active-voice subjects of “noticed” and “detected”
as the patients. Each proposition was presented only once.
Whether a proposition was presented in the active or passive
voice was randomly determined, and 50% of the propositions
were presented in each voice. Each sentence was presented vi-
sually for 3.5 s, followed by 7 s of fixation. After 7 s, participants
could be asked a question about who did what to whom in the
sentence they had just read.

Searchlight Analyses. The search region of interest for experiment 3
was formed by dilating the group-level anterior agent and patient
ROIs discovered in experiment 2 by 8§ mm. All classification
analyses were conducted in the subject’s native space. As in ex-
periments 1 and 2, all used a linear classifier with a shrinkage
estimate of the covariance matrix. Local voxel neighborhoods
were defined using a 2-mm (one-voxel) radius, entailing that
nonedge neighborhoods contained 27 voxels.

Frankland and Greene www.pnas.org/cgi/content/short/1421236112

For all classification analyses, searchlights iteratively selected
data from local voxel neighborhoods to make six-way decisions
regarding the noun occupying the agent or patient role on a given
trial. Individual-level accuracy maps were smoothed with a 2-mm
FWHM kernel, warped to Talairach space. The group of subjects’
maps was submitted to a directional one-sample ¢ test against
0.16667 (chance accuracy) to determine whether any regions
reliably encoded information about the identity of the agent or
patient across subjects. We used a liberal voxelwise threshold of
P < 0.05 coupled with a Monte Carlo simulation to determine
the probability of obtaining significant clusters given data con-
taining only noise (clusterwise corrected threshold of P < 0.05).
As in experiments 1 and 2, we estimated the smoothness of the
data by conducting the same classification and aggregation
procedures with randomly permuted labels.

Replication Results. As in experiment 2, we find a medial region of
ImSTC that carries information about the identity of the agent (k=
37, P < 0.05, clusterwise corrected), and a lateral region that
carries information about the identity of the patient (k = 107, P <
0.001, clusterwise corrected) (Fig. S5).

Also as in experiment 2, we next localized these regions in N — 1
subjects, leaving each subject’s data out, and tested the mean
classification accuracy across these agent and patient regions in
the withheld subject. As in experiment 2, we find a significant
role-by-region interaction [F(j 49y = 8.7, P < 0.005; permutation
test: P = 0.0045]. The patient region is again the more selective
region: Patient classification is significantly better than agent
classification within the independently localized patient regions
[t@oy = 2.48, P = 0.017; permutation test: P = 0.017]. Agent
classification is significantly better than chance within the agent
regions [t4g = 1.91, P = 0.03; permutation test: P = 0.038],
whereas patient classification is not [t4g = —0.13, P = 0.45;
permutation test: P = 0.5]. As in experiment 2, agent classifica-
tion is not significantly better than patient classification within the
agent region [f(40) = 1.26, P = 0.21; permutation test: P = 0.22].

These results thus replicate those of experiment 2. We again
find that a lateral region of ImSTC encodes the identity of the
patient, whereas a medial region of InSTC encodes the identity of
the agent. We once again find that the patient region is selective
for patient information. As before, the evidence for selectivity in
the agent region is suggestive but somewhat weaker.
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Fig. S1. Experiment 1 whole-brain searchlight analysis results. (A) Left mid-superior temporal cortex (ImSTC) and (B) right insula/extreme capsule region found
to distinguish mirror image propositions (e.g., “the truck hit the ball”/"the ball the truck”).

0.6
058l I Google search |
I Google ngram corpus
0.56 |- .
min{“the truck max({“the truck mean(“the truck “the truck hit* “*hitthe ball*  “truck hit"
0.54 - hit*, *hit hit”, “hit hit”, “hit R
13] the ball") the ball") the ball")
E 0.52) ccovven 4
S [
=] 0.5
u ...........
R 0.48 E
e BT LT |
0.44 ]
0.42 .
04
min max mean ‘the’ verb/ ‘the’ agent/  semantic
agent/  patient verb classification
verb

frequency metric

Fig. S2. As a control, we attempted to use ImSTC patterns of activity to predict frequency statistics for noun/verb and verb/noun combinations (e.g., “the truck
hit,” or “hit the ball”). The patterns of activity did not reliably carry information about any of the frequency statistics tested. Red horizontal bars indicate the
mean results of a randomization procedure that scrambled the frequency statistics and performed the same analysis 1,000 times for each subject. The text
above each bar pair provides an example of the part of an example proposition, “the truck hit the ball,” described by that frequency statistic.
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Fig. S3. Heat map visualizing variation in the prediction of amygdala activity as a function of different sigmoidal transformations of the signed distance of an
observation from the ImSTC classification boundary. Colors correspond to different p values for this regression averaged across 16 cross-validation iterations.
The x axis represents different values of the sigmoid’s “center.” The y axis represents different slopes, with steeper slopes located at the top of the graph.
Together, these two parameters yield different shapes, three of which are shown at the appropriate locations in the space for reference. Vertical bars through
the reference sigmoids correspond to the location of the classification boundary, as does the bar at the top along the x axis. The “+" signifies the positive side
of the classification hyperplane (the “grandfather kicked the baby” side), whereas the “—" signifies that negative side of the hyperplane. We see better
prediction when the sigmoid is centered at or to the right of the hyperplane. The best prediction is obtained by a function with a steep slope, centered slightly
to the right of the hyperplane. (See Fig. 1B.) This demonstrates that patterns corresponding to “the grandfather kicked the baby" are more likely to elicit an
amygdala response than their mirror image, as explained in the main text. However, the rightward shift of the best sigmoid, past the classification boundary,
also suggests that the likelihood of no amygdala response, given the “grandfather kicked the baby” pattern in ImSTC was greater than the likelihood of an
amygdala response, given the “baby kicked the grandfather” pattern. More generally, this demonstrates that the point of indifference for classification need
not coincide with the point of indifference for predicting a response elsewhere in the brain. This approach may be useful for empirically testing subtly different
quantitative functions relating information in one brain area to information or activation in other.
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Fig. S4. Searchlight results for experiment 2 for the three classification problems. Coronal slices show the topography of the neighboring anterior verb, agent,
and patient subregions.
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Fig. S5. Agent and patient searchlight results within ImSTC for experiments 2 and 3. In both experiments, we identify a medial region that encodes in-
formation about the agent (blue) as well as an adjacent lateral region that encodes information about the patient (red). For both experiments, images show
clusters surviving a threshold of P < 0.05, corrected. For experiment 3, analysis was restricted to a region created by dilating the regions identified in ex-
periment 2 by 8 mm.

Frankland and Greene www.pnas.org/cgi/content/short/1421236112 10 of 12


www.pnas.org/cgi/content/short/1421236112

[ T

/

1\

BN AS PN AN D

Table S1. Active and passive versions of the sentences used in experiment 1
Pair Mirror image sentence 1 Mirror image sentence 2 Use in experiment 1
Active voice
1 The grandfather kicked the baby The baby kicked the grandfather Connectivity
2 The mother struck the boy The boy struck the mother Connectivity
3 The father pulled the child The child pulled the father ROI localization
4 The grandmother touched the girl The girl touched the grandmother ROI localization
5 The truck hit the ball The ball hit the truck ROI localization
6 The door smacked the branch The branch smacked the door ROI localization

Passive voice
1

o vl h WwWwN

The baby was kicked by the grandfather
The boy was struck by the mother

The child was pulled by the father

The girl touched the grandmother

The ball was hit by the truck

The branch was smacked by the door

The grandfather was kicked by the baby
The mother was struck by the boy

The father was pulled by the child

The grandmother touched the girl

The truck was hit by the ball

The door was smacked by the branch

Connectivity
Connectivity
ROI localization
ROI localization
ROI localization
ROI localization

Table S2. Post hoc analysis of ImSTC and right posterior insula
ROIs discovered by the whole-brain searchlight analysis

Pair Mirror image pair Mean accuracy

ImSTC
1 STRUCK (mother, boy) 0.566
2 KICKED (grandfather, baby) 0.602
3 TOUCHED (grandmother, girl) 0.563
4 PULLED (father, child) 0.565
5 HIT (truck, ball) 0.556
6 SMACKED (door, branch) 0.597

Right insula
1 STRUCK (mother, boy) 0.562
2 KICKED (grandfather, baby) 0.557
3 TOUCHED (grandmother, girl) 0.583
4 PULLED (father, child) 0.546
5 HIT (truck, ball) 0.565
6 SMACKED (door, branch) 0.562

Classification performance is broken down by mirror image proposition pair.

Table S3. Searchlight results for experiment 2 listing significant clusters within ImSTC

Identification problem Center coordinates (Talairach) No. voxels Smoothness of noise map; XYZ, mm Corrected P(data|noise)
Agent -46, —-18, 1 67 4.27,5.72, 4.93 P < 0.01
-57,-37,7 P < 0.02
Patient -57, -10, 2 5.13, 5.6, 5.47 P < 0.0001
Verb -61, —15, 2 60 4.59, 6.17, 5.08 P < 0.025
—-55, 49, 5 433 P < 0.0001

All searchlight analyses used a voxelwise threshold of P < 0.005, and a corrected threshold of P < 0.05 to identify significant clusters.
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Table S4. Post hoc analyses of agent and patient identification performance within their corresponding ROIs when
generalizing to each verb context and new pairwise noun discriminations

Content

Patient in patient ROI

Agent in anterior agent ROI

Agent in posterior agent ROI

Generalization by verb context

Verb
“Chase”
“Block”
“Bump”
“Approach”
“Scratch”

Generalization by noun pair
Noun pair discrimination

Man/Girl
Man/Dog
Man/Cat
Girl/Dog
Girl/Cat
Dog/Cat

2.12, P=0.022
1.67, P = 0.054
3.03, P=0.003
2.15, P =0.021
4.31, P=0.0001*

1.85, P =0.039
1.23, P=0.115
2.90, P = 0.004
1.20, P = 0.121
3.53, P = 0.0009*
1.71, P=0.05

2.04, P=0.026
2.37, P=0.013
1.78, P = 0.044
2.61, P =0.008
2.77, P = 0.005

2.68, P = 0.0065
1.47, P =0.077
2.22, P=0.018
1.08, P =0.145
3.2, P=0.0019*
1.20, P =0.121

1.59, P = 0.063
2.16, P = 0.021
2.37, P=0.013
3.19, P = 0.002*
1.87, P =0.037

3.21, P =0.0019*
2.10, P =0.023
2.02, P =0.027
2.62, P = 0.0075
1.56, P = 0.066
1.06, P =0.15

Values are t statistics, with one-tailed P values against chance. Our main goal is to qualitatively describe the pattern of results.

However, asterisks (*) mark accuracies that withstand Bonferroni correction for multiple comparisons.
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